Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development of customized perovskite photodetectors

Abstract

The capabilities of photodetectors based on halide perovskites have advanced rapidly in recent years, with their typical metrics—including responsivity, detectivity and response speed—surpassing those of silicon detectors. However, concerns regarding reliability and manufacturing yield limit commercial interest in replacing established technology with perovskite devices in conventional applications such as communications and imaging. A promising initial step towards the broader commercialization of perovskite detectors lies in customized device architectures for specific applications or products, an approach that can fully leverage the compositional versatility and integration capabilities of perovskite materials. Here we explore the development of traditional standardized perovskite photodetectors and consider the emergence of customized perovskite photodetectors, including shape-customized detectors, selective photodetectors, multidimensional photodetectors, dynamic-tracking detectors and neuromorphic visual sensors. We also consider the key challenges that need to be addressed to deliver application-specific devices for commercial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applications of photodetectors and the advantages of perovskite customization.
Fig. 2: Photoconductive and photodiode perovskite detectors.
Fig. 3: Perovskite phototransistors.
Fig. 4: Customized perovskite photodetectors.
Fig. 5: Neuromorphic perovskite detectors.

Similar content being viewed by others

References

  1. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  Google Scholar 

  2. Fu, L. et al. TexSe1x photodiode shortwave infrared detection and imaging. Adv. Mater. 35, 2211522 (2023).

    Article  Google Scholar 

  3. Sim, J. et al. Enhanced photodetection performance of an in situ core/shell perovskite–MoS2 phototransistor. ACS Nano 18, 16905–16913 (2024).

    Article  Google Scholar 

  4. Jiang, Z. et al. Self-assembly PbS quantum dot-conjugated polymer hybrid-layered phototransistor enables SWIR photodetection with high detectivity. Adv. Opt. Mater. 12, 2303188 (2024).

    Article  Google Scholar 

  5. Li, L. et al. CMOS-compatible tellurium/silicon ultra-fast near-infrared photodetector. Small 19, 2303114 (2023).

    Article  Google Scholar 

  6. Qin, H. et al. Virtual Frisch grid perovskite CsPbBr3 semiconductor with 2.2-centimeter thickness for high energy resolution gamma-ray spectrometer. Nat. Commun. 16, 158 (2025).

    Article  Google Scholar 

  7. Kuo, M. H., Wu, M. C. & Lin, R. B. Sensitivity analysis of multi-project wafers production cost. In Proc. 2006 International Computer Symposium 87–92 (ICS, 2006).

  8. Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article  Google Scholar 

  9. Zhao, K. et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells. Nature 632, 301–306 (2024).

    Article  Google Scholar 

  10. Luo, J. et al. Vapour-deposited perovskite light-emitting diodes. Nat. Rev. Mater. 9, 282–294 (2024).

    Article  Google Scholar 

  11. Jiang, Q. & Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 9, 399–419 (2024).

    Article  Google Scholar 

  12. Dou, L. et al. Solution-processed hybrid perovskite photodetectors with high detectivity. Nat. Commun. 5, 5404 (2014).

    Article  Google Scholar 

  13. Feng, X. et al. Differential perovskite hemispherical photodetector for intelligent imaging and location tracking. Nat. Commun. 15, 577 (2024).

    Article  Google Scholar 

  14. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  Google Scholar 

  15. Zhou, Y. et al. Self-powered perovskite photon-counting detectors. Nature 616, 712–718 (2023).

    Article  Google Scholar 

  16. Cao, F. et al. A dual-functional perovskite-based photodetector and memristor for visual memory. Adv. Mater. 35, 2304550 (2023).

    Article  Google Scholar 

  17. Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 10, 1927 (2019).

    Article  Google Scholar 

  18. Liang, S. et al. Metal halide perovskite nanorods with tailored dimensions, compositions and stabilities. Nat. Synth. 2, 719–728 (2023).

    Article  Google Scholar 

  19. Zhao, Y. et al. Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15, 187 (2023).

    Article  Google Scholar 

  20. Wang, M., Cao, F., Meng, L., Wang, M. & Li, L. Direct integration of optoelectronic arrays with arbitrary non-developable structures. Nat. Mater. 24, 1778–1784 (2025).

    Article  Google Scholar 

  21. DeVorkin, D. H. Electronics in astronomy: early applications of the photoelectric cell and photomultiplier for studies of point-source celestial phenomena. Proc. IEEE 73, 1205–1220 (1985).

    Article  Google Scholar 

  22. Goto, K., Takahira, H. & Tanaka, M. in Optical Amplifiers and their Applications ThC5 (Optica Publishing Group, 1994).

  23. Krake, M. & Rothe, H. German infrared and night vision technology: from the beginning until 1945. Proc. SPIE 7780, 77800S (2010).

  24. Shu, J. & Tang, D. Recent advances in photoelectrochemical sensing: from engineered photoactive materials to sensing devices and detection modes. Anal. Chem. 92, 363–377 (2020).

    Article  Google Scholar 

  25. Li, P. et al. Application status and development trend of intelligent sensor technology in the electric power industry. IET Sci. Meas. Technol. 18, 145–162 (2024).

    Article  Google Scholar 

  26. Sun, H., Tian, W., Cao, F., Xiong, J. & Li, L. Ultrahigh-performance self-powered flexible double-twisted fibrous broadband perovskite photodetector. Adv. Mater. 30, 1706986 (2018).

    Article  Google Scholar 

  27. Zhang, M.-N. et al. Spectrum projection with a bandgap-gradient perovskite cell for colour perception. Light Sci. Appl. 9, 162 (2020).

    Article  Google Scholar 

  28. Jiang, H. et al. Metasurface-enabled broadband multidimensional photodetectors. Nat. Commun. 15, 8347 (2024).

    Article  Google Scholar 

  29. Luo, X. et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15, 3086 (2024).

    Article  Google Scholar 

  30. Tan, P., Zou, Y., Fan, Y. & Li, Z. Self-powered wearable electronics. Wearable Technol. 1, e5 (2020).

    Article  Google Scholar 

  31. Yang, J. et al. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 3, 875–883 (2013).

    Article  Google Scholar 

  32. Sadaf, M. et al. Connected and automated vehicles: infrastructure, applications, security, critical challenges, and future aspects. Technologies 11, 117 (2023).

    Article  Google Scholar 

  33. Front cover. SmartBot 1, e12013 (2025).

  34. Rosales, B. A., Schutt, K., Berry, J. J. & Wheeler, L. M. Leveraging low-energy structural thermodynamics in halide perovskites. ACS Energy Lett. 8, 1705–1715 (2023).

    Article  Google Scholar 

  35. Song, Y. et al. Marker pen writing of perovskite solar modules. Nat. Commun. 16, 6283 (2025).

    Article  Google Scholar 

  36. Kim, D. W., Hyun, C., Shin, T. J. & Jeong, U. Precise tuning of multiple perovskite photoluminescence by volume-controlled printing of perovskite precursor solution on cellulose paper. ACS Nano 16, 2521–2534 (2022).

    Article  Google Scholar 

  37. Mosquera-Lois, I. et al. Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors. Nat. Rev. Chem. 9, 287–304 (2025).

    Article  Google Scholar 

  38. Schröder, V. R. F. et al. Using combinatorial inkjet printing for synthesis and deposition of metal halide perovskites in wavelength-selective photodetectors. Adv. Eng. Mater. 24, 2101111 (2022).

    Article  Google Scholar 

  39. Schramm, T. et al. Electrical doping of metal halide perovskites by co-evaporation and application in PN junctions. Adv. Mater. 36, 2314289 (2024).

    Article  Google Scholar 

  40. Guo, L. et al. A single-dot perovskite spectrometer. Adv. Mater. 34, 2200221 (2022).

    Article  Google Scholar 

  41. Guo, L. et al. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 36, 2402253 (2024).

    Article  Google Scholar 

  42. Zhou, Y. et al. Full-color pixel with only a single perovskite photodiode. Adv. Mater. 37, 2502889 (2025).

    Article  Google Scholar 

  43. Hu, X. et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater. 24, 7373–7380 (2014).

    Article  Google Scholar 

  44. Lian, Z. et al. High-performance planar-type photodetector on (100) facet of MAPbI₃ single crystal. Sci. Rep. 5, 16563 (2015).

    Article  MathSciNet  Google Scholar 

  45. Liu, Y. et al. A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30, 1707314 (2018).

    Article  Google Scholar 

  46. Li, X. et al. High detectivity graphene–silicon heterojunction photodetector. Small 12, 595–601 (2016).

    Article  Google Scholar 

  47. Yun, Y. et al. A wide bandgap halide perovskite-based self-powered blue photodetector with 84.9% external quantum efficiency. Adv. Mater. 34, 2206932 (2022).

    Article  Google Scholar 

  48. Cheng, W., He, X., Wang, J. G., Tian, W. & Li, L. N-(2-aminoethyl) acetamide additive enables phase-pure and stable α-FAPbI3 for efficient self-powered photodetectors. Adv. Mater. 34, 2208325 (2022).

    Article  Google Scholar 

  49. Min, L. et al. Pyroelectric-accelerated perovskite photodetector for picosecond light detection and ranging. Adv. Mater. 36, 2400279 (2024).

    Article  Google Scholar 

  50. Wang, Y. et al. Carrier multiplication in perovskite solar cells with internal quantum efficiency exceeding 100%. Nat. Commun. 14, 6293 (2023).

    Article  Google Scholar 

  51. Fang, Y. & Huang, J. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 27, 2804–2810 (2015).

    Article  Google Scholar 

  52. Li, G., Wang, Y., Huang, L. & Sun, W. Research progress of high-sensitivity perovskite photodetectors: a review of photodetectors: noise, structure, and materials. ACS Appl. Electron. Mater. 4, 1485–1505 (2022).

    Article  Google Scholar 

  53. Morteza Najarian, A. et al. Sub-millimetre light detection and ranging using perovskites. Nat. Electron. 5, 511–518 (2022).

    Article  Google Scholar 

  54. Li, C. et al. Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging. Light Sci. Appl. 9, 31 (2020).

    Article  Google Scholar 

  55. Shen, L. et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Mater. Horiz. 4, 242–248 (2017).

    Article  Google Scholar 

  56. Yang, J. et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Adv. Opt. Mater. 7, 1801732 (2019).

    Article  Google Scholar 

  57. Dong, Q. et al. Electron–hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  Google Scholar 

  58. Li, F. et al. Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015).

    Article  Google Scholar 

  59. Chen, C., Zhang, X., Wu, G., Li, H. & Chen, H. Visible-light ultrasensitive solution-prepared layered organic–inorganic hybrid perovskite field-effect transistor. Adv. Opt. Mater. 5, 1600539 (2017).

    Article  Google Scholar 

  60. Xie, C. & Yan, F. Perovskite/poly(3-hexylthiophene)/graphene multiheterojunction phototransistors with ultrahigh gain in broadband wavelength region. ACS Appl. Mater. Interfaces 9, 1569–1576 (2017).

    Article  Google Scholar 

  61. Xie, C., You, P., Liu, Z., Li, L. & Yan, F. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light Sci. Appl. 6, e17023 (2017).

    Article  Google Scholar 

  62. Jiang, J. et al. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat. Commun. 11, 4266 (2020).

    Article  Google Scholar 

  63. Zhang, C. et al. Photodetectors based on MASnI3/MoS2 hybrid-dimensional heterojunction transistors: breaking the responsivity–speed trade-off. ACS Nano 18, 19303–19313 (2024).

    Article  Google Scholar 

  64. Ejeckam, F. E., Chua, C. L., Zhu, Z. H. & Lo, Y. H. High-performance InGaAs photodetectors on Si and GaAs substrates. In Proc. IEEE/Cornell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits 194–200 (IEEE, 1995); https://doi.org/10.1109/CORNEL.1995.482435

  65. Michel, J., Liu, J. & Kimerling, L. C. High-performance Ge-on-Si photodetectors. Nat. Photon. 4, 527–534 (2010).

    Article  Google Scholar 

  66. Feng, X. et al. Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging. Nat. Commun. 13, 6106 (2022).

    Article  Google Scholar 

  67. Duan, Y. et al. Programmable, high-resolution printing of spatially graded perovskites for multispectral photodetectors. Adv. Mater. 36, 2313946 (2024).

    Article  Google Scholar 

  68. Hartmann, W. et al. Broadband spectrometer with single-photon sensitivity exploiting tailored disorder. Nano Lett. 20, 2625–2631 (2020).

    Article  Google Scholar 

  69. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    Article  Google Scholar 

  70. Xue, J. et al. Narrowband perovskite photodetector-based image array for potential application in artificial vision. Nano Lett. 18, 7628–7634 (2018).

    Article  Google Scholar 

  71. Shen, L., Fang, Y., Wei, H., Yuan, Y. & Huang, J. A highly sensitive narrowband nanocomposite photodetector with gain. Adv. Mater. 28, 2043–2048 (2016).

    Article  Google Scholar 

  72. Li, L. et al. Self-filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv. Opt. Mater. 5, 1700672 (2017).

    Article  Google Scholar 

  73. Higashi, Y., Kim, K. S., Jeon, H. G. & Ichikawa, M. Enhancing spectral contrast in organic red-light photodetectors based on a light-absorbing and exciton-blocking layered system. J. Appl. Phys. 108, 034502 (2010).

    Article  Google Scholar 

  74. Sobhani, A. et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 4, 1643 (2013).

    Article  Google Scholar 

  75. Ding, N. et al. Upconversion ladder enabled super-sensitive narrowband near-infrared photodetectors based on rare earth doped florine perovskite nanocrystals. Nano Energy 76, 105103 (2020).

    Article  Google Scholar 

  76. Wang, H., Li, L., Ma, J., Li, J. & Li, D. 2D perovskite narrowband photodetector arrays. J. Mater. Chem. C 9, 11085–11090 (2021).

    Article  Google Scholar 

  77. Vanderspikken, J., Maes, W. & Vandewal, K. Wavelength-selective organic photodetectors. Adv. Funct. Mater. 31, 2104060 (2021).

    Article  Google Scholar 

  78. Lu, C. et al. Ultranarrow-band filterless photodetectors based on CH3NH3PbClxBr3x mixed-halide perovskite single crystals. Nanotechnology 34, 345705 (2023).

    Article  Google Scholar 

  79. Fang, Y., Dong, Q., Shao, Y., Yuan, Y. & Huang, J. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  Google Scholar 

  80. Czerny, T. E. et al. Efficient narrowband photoconductivity of the excitonic resonance in two-dimensional Ruddlesden–Popper perovskites due to exciton polarons. J. Phys. Chem. Lett. 14, 4850–4857 (2023).

    Article  Google Scholar 

  81. Li, L. et al. Two-dimensional hybrid perovskite-type ferroelectric for highly polarization-sensitive shortwave photodetection. J. Am. Chem. Soc. 141, 2623–2629 (2019).

    Article  Google Scholar 

  82. Zhou, F., Abdelwahab, I., Leng, K., Loh, K. P. & Ji, W. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater. 31, 1904155 (2019).

    Article  Google Scholar 

  83. Zhang, X. et al. Self-assembly of 2D hybrid double perovskites on 3D Cs2AgBiBr6 crystals towards ultrasensitive detection of weak polarized light. Angew. Chem. Int. Ed. 61, e202205939 (2022).

    Article  Google Scholar 

  84. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article  Google Scholar 

  85. Wang, L. et al. A chiral reduced-dimension perovskite for an efficient flexible circularly polarized light photodetector. Angew. Chem. Int. Ed. 59, 6442–6450 (2020).

    Article  Google Scholar 

  86. Zhao, Y. et al. Lead-free chiral 2D double perovskite microwire arrays for circularly polarized light detection. Adv. Opt. Mater. 10, 2102227 (2022).

    Article  Google Scholar 

  87. Kim, H. et al. Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles. Adv. Sci. 9, 2104598 (2022).

    Article  Google Scholar 

  88. Zhan, Y. et al. A butterfly-inspired hierarchical light-trapping structure towards a high-performance polarization-sensitive perovskite photodetector. Angew. Chem. Int. Ed. 58, 16456–16462 (2019).

    Article  Google Scholar 

  89. Li, S. X. et al. In situ encapsulated moiré perovskite for stable photodetectors with ultrahigh polarization sensitivity. Adv. Mater. 35, 2207771 (2023).

    Article  Google Scholar 

  90. Li, C. Y. et al. Multiple-polarization-sensitive photodetector based on a perovskite metasurface. Opt. Lett. 47, 565–568 (2022).

    Article  Google Scholar 

  91. Min, L. et al. Frequency-selective perovskite photodetector for anti-interference optical communications. Nat. Commun. 15, 2066 (2024).

    Article  Google Scholar 

  92. Wang, Q. et al. High-resolution, flexible, and full-color perovskite image photodetector via electrohydrodynamic printing of ionic-liquid-based ink. Adv. Funct. Mater. 31, 2100857 (2021).

    Article  Google Scholar 

  93. Fu, Y. et al. Gradient bandgap-tunable perovskite microwire arrays toward flexible color-cognitive devices. Adv. Funct. Mater. 33, 2214094 (2023).

    Article  Google Scholar 

  94. Bai, J. et al. Wafer-scale patterning integration of chiral 3D perovskite single crystals toward high-performance full-Stokes polarimeter. J. Am. Chem. Soc. 146, 18771–18780 (2024).

    Article  Google Scholar 

  95. Ma, J., Fang, C., Liang, L., Wang, H. & Li, D. Full-Stokes polarimeter based on chiral perovskites with chirality and large optical anisotropy. Small 17, 2103855 (2021).

    Article  Google Scholar 

  96. Guo, W. et al. Broadband photoresponses from ultraviolet to near-infrared (II) region through light-induced pyroelectric effects in a hybrid perovskite. Angew. Chem. Int. Ed. 61, e202213477 (2022).

    Article  Google Scholar 

  97. Hou, X. et al. Pyroelectric photoconductive diode for highly sensitive and fast DUV detection. Adv. Mater. 36, 2314249 (2024).

    Article  Google Scholar 

  98. Feng, G., Zhang, X., Tian, B. & Duan, C. Retinomorphic hardware for in-sensor computing. InfoMat 5, e12473 (2023).

    Article  Google Scholar 

  99. Li, Y. et al. Memristors with analogue switching and high on/off ratios using a van der Waals metallic cathode. Nat. Electron. 8, 36–45 (2025).

    Article  Google Scholar 

  100. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  101. Zhu, Q. B. et al. A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems. Nat. Commun. 12, 1798 (2021).

    Article  Google Scholar 

  102. Wang, C. Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  103. Long, Z. et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14, 1972 (2023).

    Article  Google Scholar 

  104. Wang, Y. et al. Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing. Adv. Mater. 30, 1802883 (2018).

    Article  Google Scholar 

  105. He, Z. et al. Perovskite retinomorphic image sensor for embodied intelligent vision. Sci. Adv. 11, eads2834 (2025).

    Article  Google Scholar 

  106. Park, J. et al. Avian eye-inspired perovskite artificial vision system for foveated and multispectral imaging. Sci. Robot. 9, eadk6903 (2024).

    Article  Google Scholar 

  107. Jin, P. et al. Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy. Nat. Commun. 14, 626 (2023).

    Article  Google Scholar 

  108. Dong, K. et al. 2D perovskite single-crystalline photodetector with large linear dynamic range for UV weak-light imaging. Adv. Funct. Mater. 34, 2306941 (2024).

    Article  Google Scholar 

  109. Yue, H. et al. Graphene/SrTiO3 interface-based UV photodetectors with high responsivity. Chin. Phys. B 30, 038502 (2021).

    Article  Google Scholar 

  110. Sakhatskyi, K. et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photon. 17, 510–517 (2023).

    Article  Google Scholar 

  111. Tang, Y. et al. Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging. Nat. Commun. 14, 4961 (2023).

    Article  Google Scholar 

  112. Bao, C. et al. A multifunctional display based on photo-responsive perovskite light-emitting diodes. Nat. Electron. 7, 375–382 (2024).

    Article  Google Scholar 

  113. Cao, F. et al. Mixed-dimensional MXene-based composite electrodes enable mechanically stable and efficient flexible perovskite light-emitting diodes. Nano Lett. 22, 4246–4252 (2022).

    Article  Google Scholar 

  114. Zhu, G. et al. MXene decorated 3D-printed carbon black-based electrodes for solid-state micro-supercapacitors. J. Mater. Chem. A 11, 25422–25428 (2023).

    Article  Google Scholar 

  115. Jang, D., Jin, H., Kim, M. & Don Park, Y. Polymeric interfacial engineering approach to perovskite-functionalized organic transistor-type gas sensors. Chem. Eng. J. 473, 145482 (2023).

    Article  Google Scholar 

  116. Xie, F. et al. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 10, 1942–1949 (2017).

    Article  Google Scholar 

  117. Vasilopoulou, M. et al. Neuromorphic computing based on halide perovskites. Nat. Electron. 6, 949–962 (2023).

    Article  Google Scholar 

  118. Zhang, F. et al. Photoinduced nonvolatile memory transistor based on lead-free perovskite incorporating fused π-conjugated organic ligands. Adv. Mater. 36, 2307326 (2024).

    Article  Google Scholar 

  119. Xie, H. et al. Printed on-chip perovskite heterostructure arrays for optical switchable logic gates. Adv. Mater. 36, 2404740 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (52025028, 52450138, 52572180, 52502292 and 52202273), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions and the Youth Talent Lifting Project of the China Association for Science and Technology. This work was also supported by the Suzhou Basic Research Project (SJC2023003). A.R.b.M.Y. also thanks Universiti Teknologi Malaysia, Potential Academic Staff PY/2024/02012-Q.J130000.2754.04K41.

Author information

Authors and Affiliations

Authors

Contributions

H.S., L.L. and A.R.b.M.Y. conceived and wrote the first draft. H. S. and C. L. contributed equally. All authors contributed to the discussion of content and revisions of the paper.

Corresponding authors

Correspondence to Liang Li or Abd. Rashid bin Mohd Yusoff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Haotong Wei and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1 and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Li, C., Li, L. et al. The development of customized perovskite photodetectors. Nat Electron 8, 1170–1181 (2025). https://doi.org/10.1038/s41928-025-01517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01517-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing