Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The development of thermal interface materials

Abstract

Increasing power densities in microprocessors and artificial intelligence hardware are pushing the thermal limits of electronic systems, and thermal interface materials—thin layers that conduct heat between dissimilar surfaces—are central to addressing this challenge. Classical models suggest that efficient heat transfer is possible with such materials, but real-world performance is always limited by nanoscale roughness, imperfect contacts and degradation under thermal cycling. Here we explore the development of thermal interface materials. We examine the physical origin of interfacial thermal resistance and consider its impact on device scaling, efficiency and reliability. We then discuss material and design strategies that can balance thermal conductivity with mechanical compliance, bond line thickness and electrical insulation. Finally, we highlight the need to treat thermal interface materials, not as passive fillings, but as integral system components that are co-designed alongside device architectures, and propose an integrated engineering framework for the future development of thermal interface materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Origins of interface thermal resistance.
Fig. 2: Strategies for reducing effective thermal resistance at interfaces.
Fig. 3: Integrated engineering framework for future TIMs.

Similar content being viewed by others

References

  1. van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).

    Article  Google Scholar 

  2. Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).

    Article  Google Scholar 

  3. Prasher, R. Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94, 1571–1586 (2006).

    Article  Google Scholar 

  4. Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).

    Article  MathSciNet  Google Scholar 

  5. Liang, Z., Sasikumar, K. & Keblinski, P. Thermal transport across a substrate−thin-film interface: effects of film thickness and surface roughness. Phys. Rev. Lett. 113, 065901 (2014).

    Article  Google Scholar 

  6. Schroeder, D. P. et al. Thermal resistance of transferred-silicon-nanomembrane interfaces. Phys. Rev. Lett. 115, 256101 (2015).

    Article  Google Scholar 

  7. Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).

    Article  Google Scholar 

  8. Pfeifer, T. W. et al. Ion irradiation induced crystalline disorder accelerates interfacial phonon conversion and reduces thermal boundary resistance. Phys. Rev. B 109, 165421 (2024).

    Article  Google Scholar 

  9. Liu, H., Aljbri, A., Song, J., Jiang, J. & Hua, C. Research advances on AI-powered thermal management for data centers. Tsinghua Sci. Technol. 27, 303–314 (2022).

    Article  Google Scholar 

  10. Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. TODAY 17, 163–174 (2014).

    Article  Google Scholar 

  11. Royne, A., Dey, C. J. & Mills, D. R. Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).

    Article  Google Scholar 

  12. Wang, Y. et al. High-performance stretchable organic thermoelectric generator via rational thermal interface design for wearable electronics. Adv. Energy Mater. 12, 2102835 (2022).

    Article  Google Scholar 

  13. Kim, J., Oh, J. & Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 149, 192–212 (2019).

    Article  Google Scholar 

  14. Zhao, C., Li, Y., Liu, Y., Xie, H. & Yu, W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Adv. Compos. Hybrid Mater. 6, 27 (2023).

    Article  Google Scholar 

  15. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  Google Scholar 

  16. Guo, X., Cheng, S., Cai, W., Zhang, Y. & Zhang, X. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mater. Des. 209, 109936 (2021).

    Article  Google Scholar 

  17. Zhou, X. W., Jones, R. E., Duda, J. C. & Hopkins, P. E. Molecular dynamics studies of material property effects on thermal boundary conductance. Phys. Chem. Chem. Phys. 15, 11078–11087 (2013).

    Article  Google Scholar 

  18. Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).

    Article  Google Scholar 

  19. Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).

    Article  Google Scholar 

  20. Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett 84, 4768–4770 (2004).

    Article  Google Scholar 

  21. Cheaito, R. et al. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Appl. Phys. Lett 106, 093114 (2015).

    Article  Google Scholar 

  22. Wilson, R. B. & Cahill, D. G. Experimental validation of the interfacial form of the Wiedemann–Franz Law. Phys. Rev. Lett. 108, 255901 (2012).

    Article  Google Scholar 

  23. Li, X. & Yang, R. Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys. Rev. B 86, 054305 (2012).

    Article  Google Scholar 

  24. O’Brien, P. J. et al. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 12, 118–122 (2013).

    Article  Google Scholar 

  25. Hopkins, P. E., Duda, J. C., Petz, C. W. & Floro, J. A. Controlling thermal conductance through quantum dot roughening at interfaces. Phys. Rev. B 84, 035438 (2011).

    Article  Google Scholar 

  26. Hopkins, P. E., Phinney, L. M., Serrano, J. R. & Beechem, T. E. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Phys. Rev. B 82, 085307 (2010).

    Article  Google Scholar 

  27. Gundrum, B. C., Cahill, D. G. & Averback, R. S. Thermal conductance of metal–metal interfaces. Phys. Rev. B 72, 245426 (2005).

    Article  Google Scholar 

  28. Madhusudana, C. V. Thermal Contact Conductance (Springer, 2014); https://doi.org/10.1007/978-3-319-01276-6

  29. Zhao, J.-W., Zhao, R., Huo, Y.-K. & Cheng, W.-L. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705–716 (2019).

    Article  Google Scholar 

  30. Wang, C., Lin, Q., Hong, J., Zhou, Y. & Pan, Z. Effect of load application method on thermal contact resistance and uniformity of temperature distribution. Appl. Therm. Eng. 229, 120625 (2023).

    Article  Google Scholar 

  31. Wen, Y. et al. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials—a review. Adv. Mater. 34, 2201023 (2022).

    Article  Google Scholar 

  32. Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).

    Article  Google Scholar 

  33. Too, S. S., Hayward, J., Master, R., Tan, T.-S. & Keok, K.-H. Effects of organic package warpage on microprocessor thermal performance. In Proc. 57thElectronic Components and Technology Conference 748–754 (IEEE, 2007); https://doi.org/10.1109/ECTC.2007.373881.

  34. Tariq, A. & Asif, M. Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transf 52, 291–307 (2016).

    Article  Google Scholar 

  35. Solbrekken, G. L., Chiu, C.-P., Byers, B. & Reichebbacher, D. The development of a tool to predict package level thermal interface material performance. In ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 48–54 (IEEE, 2000).

  36. Xu, X., Chen, J., Zhou, J. & Li, B. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30, 1705544 (2018).

    Article  Google Scholar 

  37. Zha, J.-W., Wang, F. & Wan, B. Polymer composites with high thermal conductivity: theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025).

    Article  Google Scholar 

  38. Xie, Z. et al. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 33, 2214071 (2023).

    Article  Google Scholar 

  39. Lei, C., Xie, Z., Wu, K. & Fu, Q. Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33, 2103495 (2021).

    Article  Google Scholar 

  40. An, L. et al. Unlocking the trade-off between intrinsic and interfacial thermal transport of boron nitride nanosheets by surface functionalization for advanced thermal interface materials. Adv. Mater. 37, 2412137 (2025).

    Article  Google Scholar 

  41. Cao, M. et al. Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, 2300077 (2023).

    Article  Google Scholar 

  42. Ghai, V., Pashazadeh, S., Ruan, H. & Kádár, R. Orientation of graphene nanosheets in magnetic fields. Prog. Mater. Sci. 143, 101251 (2024).

    Article  Google Scholar 

  43. Zhao, T., Zhang, C., Du, Z., Li, H. & Zou, W. Functionalization of AgNWs with amino groups and their application in an epoxy matrix for antistatic and thermally conductive nanocomposites. RSC Adv 5, 91516–91523 (2015).

    Article  Google Scholar 

  44. Zhang, H. et al. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 33, 2211985 (2023).

    Article  Google Scholar 

  45. Ding, D. et al. Effect of nanoscale in situ interface welding on the macroscale thermal conductivity of insulating epoxy composites: a multiscale simulation investigation. ACS Nano 17, 19323–19337 (2023).

    Article  Google Scholar 

  46. Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull 37, 1273–1281 (2012).

    Article  Google Scholar 

  47. Dai, W. et al. Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nanomicro Lett. 15, 9 (2022).

    Google Scholar 

  48. Yu, W., Liu, C. & Fan, S. Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021).

    Article  Google Scholar 

  49. Ping, L. et al. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 9, 8213–8219 (2017).

    Article  Google Scholar 

  50. Gong, W. et al. Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder. Nano Lett. 18, 3586–3592 (2018).

    Article  Google Scholar 

  51. Cheng, R. et al. Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling. Nat. Commun. 16, 794 (2025).

    Article  Google Scholar 

  52. Barako, M. T. et al. Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl. Mater. Interfaces 9, 42067–42074 (2017).

    Article  Google Scholar 

  53. Jing, L. et al. 3D Graphene-nanowire “sandwich” thermal interface with ultralow resistance and stiffness. ACS Nano 17, 2602–2610 (2023).

    Article  Google Scholar 

  54. Wu, K. et al. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. 20, 104–111 (2025).

    Article  Google Scholar 

  55. Ou, K. et al. Phase-change composite elastomers for efficient thermal management at contact interface. Compos. Commun. 52, 102149 (2024).

    Article  Google Scholar 

  56. Bartlett, M. D. et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl Acad. Sci. USA 114, 2143–2148 (2017).

    Article  Google Scholar 

  57. Li, Y. et al. Highly-effective thermoelectric cooling for power semiconductor devices packed with thermal-expansion offset and flame retardancy epoxy resin. Adv. Funct. Mater. 35, 2420944 (2025).

    Article  Google Scholar 

  58. Guo, C. et al. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 9, 1690–1699 (2022).

    Article  Google Scholar 

  59. Zhan, K. et al. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge. Nat. Commun. 15, 2905 (2024).

    Article  Google Scholar 

  60. Prasher, R. S., Shipley, J., Prstic, S., Koning, P. & Wang, J. Thermal resistance of particle laden polymeric thermal interface materials. J. Heat Transf. 125, 1170–1177 (2003).

    Article  Google Scholar 

  61. Kantharaj, R., Wassgren, C., Morris, A. & Marconnet, A. Impact of squeezing on the microstructure of thermal interface materials. In Proc. 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) 1241–1249 (IEEE, 2021); https://doi.org/10.1109/ITherm51669.2021.9503232.

  62. Dou, Z., Zhang, B., Xu, P., Fu, Q. & Wu, K. Dry-contact thermal interface material with the desired bond line thickness and ultralow applied thermal resistance. ACS Appl. Mater. Interfaces 15, 57602–57612 (2023).

    Google Scholar 

  63. Tanaka, S., Hojo, F., Takezawa, Y., Kanie, K. & Muramatsu, A. Highly oriented liquid crystalline epoxy film: robust high thermal-conductive ability. ACS Omega 3, 3562–3570 (2018).

    Article  Google Scholar 

  64. He, J., Xian, W., Tao, L., Corrigan, P. & Li, Y. Unstructured self-assembled molecular lamella induces ultrafast thermal transfer through a cathode/separator interphase in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 56268–56279 (2022).

    Article  Google Scholar 

  65. Xiao, M. & Du, B. X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 1, 34–42 (2016).

    Article  Google Scholar 

  66. Thermal management materials. Henkel Adhesives https://next.henkel-adhesives.com/us/en/applications/thermal-management-materials.html (2025).

  67. Thermal interface materials. Laird Technologies https://www.laird.com/products/thermal-interface-materials (2025).

  68. Thermal interface materials. Parker Chomerics https://ph.parker.com/us/en/divisions/division-chomerics-division-page/category/thermal-interface-materials (2025).

  69. What is considered high voltage—understanding HV classification. Electricity Forum https://toshiba.semicon-storage.com/us/semiconductor/knowledge/faq/mosfet_sic-mosfet/sic-mosfet-003.html (2025).

  70. IEC/EN/UL 62368-1 compliance and standards. Astrodyne TDI https://www.astrodynetdi.com/blog/iec-en-ul-62368-1-compliance-standards (2020).

  71. Yao, C. et al. Thermally conductive hexagonal boron nitride/polymer composites for efficient heat transport. Adv. Funct. Mater. 34, 2405235 (2024).

    Article  Google Scholar 

  72. Chen, J., Huang, X., Sun, B. & Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019).

    Article  Google Scholar 

  73. Iverson, E. T. et al. High thermal conductivity polyelectrolyte nanocomposite electrical insulation thin films. Adv. Funct. Mater. 35, 2420355 (2025).

    Article  Google Scholar 

  74. Wang, Y., Wang, G., Zhang, L. & Ayubi, B. I. Polydopamine-modified boron nitride nanosheet/polyimide composites with enhanced thermal conductivity and electrical insulation for high-frequency applications. ACS Appl. Nano Mater. 8, 7360–7370 (2025).

    Article  Google Scholar 

  75. Yang, K., Zhao, Y. & Liu, X. Enhanced breakdown strength of epoxy composites by constructing dual-interface charge barriers at the micron filler/epoxy matrix interface. Composites B 283, 111602 (2024).

    Article  Google Scholar 

  76. Ren, G. et al. Bulk thermally conductive polyethylene as a thermal interface material. Mater. Horiz. 12, 2957–2964 (2025).

    Article  Google Scholar 

  77. Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12, 1284 (2021).

    Article  Google Scholar 

  78. Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).

    Article  Google Scholar 

  79. Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).

    Article  Google Scholar 

  80. Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).

    Article  Google Scholar 

  81. Wang, H. et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33, 2103104 (2021).

    Article  Google Scholar 

  82. Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, eabe3767 (2021).

    Article  Google Scholar 

  83. [Gaming NB] liquid metal. ASUS https://www.asus.com/support/faq/1042184/ (2024).

  84. Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

    Article  Google Scholar 

  85. Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).

    Article  Google Scholar 

  86. Thermal interface materials market size, share, trends—2034. Global Market Insights Inc. https://www.gminsights.com/industry-analysis/thermal-interface-materials-market (2023).

  87. Bergquist sil pad tsp 3500. Henkel Adhesives https://www.henkel-adhesives.com/cn/zh/product/thermal-sil-pad-materials/bergquist_sil_padtsp3500.html (2018).

  88. TC series electrically insulating thermal sheet. AOK Technologies https://www.aok-technologies.com/products/TC-Series-Electrically-Insulating-Thermal-Sheet.html (2025).

  89. Tgard 5000. Laird Technologies https://www.laird.com/products/thermal-interface-materials/thermally-conductive-and-electrically-isolating-insulators/tgard-5000 (2025).

  90. Sil pads. Henkel Adhesives https://www.henkel-adhesives.com/ca/en/products/thermal-management-materials/sil-pads.html (2019).

  91. PTM7950 product data sheet. Honeywell https://www.solstice.com/us/en/products/advanced-semiconductor-materials/thermal-management/phase-change-materials/ptm7950#resources (2022).

  92. THERM-A-GAP GEL 50TBL datasheet. Parker Chomerics https://discover.parker.com/chomerics-gel50tbl (2024).

  93. DOWSIL tc-5026 thermally conductive compound. Dow https://www.dow.com/zh-cn/pdp.dowsil-tc-5026-thermally-conductive-compound.04063597z.html (2017).

  94. Shin-Etsu g-787 thermal grease. Shin-Etsu Chemical Co. https://www.silicone.jp/products/notice/142/index2.shtml (2025).

  95. Bai, J. G., Zhang, Z. Z., Lu, G.-Q. & Hasselman, D. P. H. Measurement of solder/copper interfacial thermal resistance by the flash technique. Int. J. Thermophys. 26, 1607–1615 (2005).

    Article  Google Scholar 

  96. Graphene thermal pad (HFC-03E). HFC https://www.hfcsz.com/products-detail/id-27.html (2024).

  97. Thermal Grizzly Conductonaut liquid metal. Stealkey Customs https://stealkeycustoms.de/en/products/thermal-grizzly-conductonaut-flusigmetall-warmeleitpaste-73-w-mk-1g (2025).

Download references

Acknowledgements

K.W. acknowledges the support by the National Natural Science Foundation of China (52522304 and 52373042), and the Institutional Research Fund from Sichuan University (2024SCUQJTX015). G.Y. acknowledges the support from Welch Foundation Award F-1861, Norman Hackerman Award in Chemical Research, and John J. McKetta Centennial Energy Chair endowment from UT Austin.

Author information

Authors and Affiliations

Authors

Contributions

G.Y. and K.W. conceived of and guided the writing of this article. Z.D. and C.L. helped with the initial literature study and figure design. All the authors contributed to the writing, editing and revising of the article.

Corresponding authors

Correspondence to Kai Wu or Guihua Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Xingyi Huang, Sheng Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Z., Lei, C., Wu, K. et al. The development of thermal interface materials. Nat Electron 8, 1146–1155 (2025). https://doi.org/10.1038/s41928-025-01543-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41928-025-01543-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing