Abstract
Increasing power densities in microprocessors and artificial intelligence hardware are pushing the thermal limits of electronic systems, and thermal interface materials—thin layers that conduct heat between dissimilar surfaces—are central to addressing this challenge. Classical models suggest that efficient heat transfer is possible with such materials, but real-world performance is always limited by nanoscale roughness, imperfect contacts and degradation under thermal cycling. Here we explore the development of thermal interface materials. We examine the physical origin of interfacial thermal resistance and consider its impact on device scaling, efficiency and reliability. We then discuss material and design strategies that can balance thermal conductivity with mechanical compliance, bond line thickness and electrical insulation. Finally, we highlight the need to treat thermal interface materials, not as passive fillings, but as integral system components that are co-designed alongside device architectures, and propose an integrated engineering framework for the future development of thermal interface materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
van Erp, R., Soleimanzadeh, R., Nela, L., Kampitsis, G. & Matioli, E. Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020).
Gebrael, T. et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat. Electron. 5, 394–402 (2022).
Prasher, R. Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE 94, 1571–1586 (2006).
Chen, J., Xu, X., Zhou, J. & Li, B. Interfacial thermal resistance: past, present, and future. Rev. Mod. Phys. 94, 025002 (2022).
Liang, Z., Sasikumar, K. & Keblinski, P. Thermal transport across a substrate−thin-film interface: effects of film thickness and surface roughness. Phys. Rev. Lett. 113, 065901 (2014).
Schroeder, D. P. et al. Thermal resistance of transferred-silicon-nanomembrane interfaces. Phys. Rev. Lett. 115, 256101 (2015).
Losego, M. D., Grady, M. E., Sottos, N. R., Cahill, D. G. & Braun, P. V. Effects of chemical bonding on heat transport across interfaces. Nat. Mater. 11, 502–506 (2012).
Pfeifer, T. W. et al. Ion irradiation induced crystalline disorder accelerates interfacial phonon conversion and reduces thermal boundary resistance. Phys. Rev. B 109, 165421 (2024).
Liu, H., Aljbri, A., Song, J., Jiang, J. & Hua, C. Research advances on AI-powered thermal management for data centers. Tsinghua Sci. Technol. 27, 303–314 (2022).
Moore, A. L. & Shi, L. Emerging challenges and materials for thermal management of electronics. Mater. TODAY 17, 163–174 (2014).
Royne, A., Dey, C. J. & Mills, D. R. Cooling of photovoltaic cells under concentrated illumination: a critical review. Sol. Energy Mater. Sol. Cells 86, 451–483 (2005).
Wang, Y. et al. High-performance stretchable organic thermoelectric generator via rational thermal interface design for wearable electronics. Adv. Energy Mater. 12, 2102835 (2022).
Kim, J., Oh, J. & Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 149, 192–212 (2019).
Zhao, C., Li, Y., Liu, Y., Xie, H. & Yu, W. A critical review of the preparation strategies of thermally conductive and electrically insulating polymeric materials and their applications in heat dissipation of electronic devices. Adv. Compos. Hybrid Mater. 6, 27 (2023).
Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).
Guo, X., Cheng, S., Cai, W., Zhang, Y. & Zhang, X. A review of carbon-based thermal interface materials: Mechanism, thermal measurements and thermal properties. Mater. Des. 209, 109936 (2021).
Zhou, X. W., Jones, R. E., Duda, J. C. & Hopkins, P. E. Molecular dynamics studies of material property effects on thermal boundary conductance. Phys. Chem. Chem. Phys. 15, 11078–11087 (2013).
Swartz, E. T. & Pohl, R. O. Thermal boundary resistance. Rev. Mod. Phys. 61, 605–668 (1989).
Kang, J. S. et al. Integration of boron arsenide cooling substrates into gallium nitride devices. Nat. Electron. 4, 416–423 (2021).
Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett 84, 4768–4770 (2004).
Cheaito, R. et al. Thermal flux limited electron Kapitza conductance in copper-niobium multilayers. Appl. Phys. Lett 106, 093114 (2015).
Wilson, R. B. & Cahill, D. G. Experimental validation of the interfacial form of the Wiedemann–Franz Law. Phys. Rev. Lett. 108, 255901 (2012).
Li, X. & Yang, R. Effect of lattice mismatch on phonon transmission and interface thermal conductance across dissimilar material interfaces. Phys. Rev. B 86, 054305 (2012).
O’Brien, P. J. et al. Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers. Nat. Mater. 12, 118–122 (2013).
Hopkins, P. E., Duda, J. C., Petz, C. W. & Floro, J. A. Controlling thermal conductance through quantum dot roughening at interfaces. Phys. Rev. B 84, 035438 (2011).
Hopkins, P. E., Phinney, L. M., Serrano, J. R. & Beechem, T. E. Effects of surface roughness and oxide layer on the thermal boundary conductance at aluminum/silicon interfaces. Phys. Rev. B 82, 085307 (2010).
Gundrum, B. C., Cahill, D. G. & Averback, R. S. Thermal conductance of metal–metal interfaces. Phys. Rev. B 72, 245426 (2005).
Madhusudana, C. V. Thermal Contact Conductance (Springer, 2014); https://doi.org/10.1007/978-3-319-01276-6
Zhao, J.-W., Zhao, R., Huo, Y.-K. & Cheng, W.-L. Effects of surface roughness, temperature and pressure on interface thermal resistance of thermal interface materials. Int. J. Heat Mass Transf. 140, 705–716 (2019).
Wang, C., Lin, Q., Hong, J., Zhou, Y. & Pan, Z. Effect of load application method on thermal contact resistance and uniformity of temperature distribution. Appl. Therm. Eng. 229, 120625 (2023).
Wen, Y. et al. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials—a review. Adv. Mater. 34, 2201023 (2022).
Singh, V. et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 9, 384–390 (2014).
Too, S. S., Hayward, J., Master, R., Tan, T.-S. & Keok, K.-H. Effects of organic package warpage on microprocessor thermal performance. In Proc. 57thElectronic Components and Technology Conference 748–754 (IEEE, 2007); https://doi.org/10.1109/ECTC.2007.373881.
Tariq, A. & Asif, M. Experimental investigation of thermal contact conductance for nominally flat metallic contact. Heat Mass Transf 52, 291–307 (2016).
Solbrekken, G. L., Chiu, C.-P., Byers, B. & Reichebbacher, D. The development of a tool to predict package level thermal interface material performance. In ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems 48–54 (IEEE, 2000).
Xu, X., Chen, J., Zhou, J. & Li, B. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 30, 1705544 (2018).
Zha, J.-W., Wang, F. & Wan, B. Polymer composites with high thermal conductivity: theory, simulation, structure and interfacial regulation. Prog. Mater. Sci. 148, 101362 (2025).
Xie, Z. et al. Joint-inspired liquid and thermal conductive interface for designing thermal interface materials with high solid filling yet excellent thixotropy. Adv. Funct. Mater. 33, 2214071 (2023).
Lei, C., Xie, Z., Wu, K. & Fu, Q. Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv. Mater. 33, 2103495 (2021).
An, L. et al. Unlocking the trade-off between intrinsic and interfacial thermal transport of boron nitride nanosheets by surface functionalization for advanced thermal interface materials. Adv. Mater. 37, 2412137 (2025).
Cao, M. et al. Vertical array of graphite oxide liquid crystal by microwire shearing for highly thermally conductive composites. Adv. Mater. 35, 2300077 (2023).
Ghai, V., Pashazadeh, S., Ruan, H. & Kádár, R. Orientation of graphene nanosheets in magnetic fields. Prog. Mater. Sci. 143, 101251 (2024).
Zhao, T., Zhang, C., Du, Z., Li, H. & Zou, W. Functionalization of AgNWs with amino groups and their application in an epoxy matrix for antistatic and thermally conductive nanocomposites. RSC Adv 5, 91516–91523 (2015).
Zhang, H. et al. A bioinspired polymer-based composite displaying both strong adhesion and anisotropic thermal conductivity. Adv. Funct. Mater. 33, 2211985 (2023).
Ding, D. et al. Effect of nanoscale in situ interface welding on the macroscale thermal conductivity of insulating epoxy composites: a multiscale simulation investigation. ACS Nano 17, 19323–19337 (2023).
Pop, E., Varshney, V. & Roy, A. K. Thermal properties of graphene: fundamentals and applications. MRS Bull 37, 1273–1281 (2012).
Dai, W. et al. Ultralow interfacial thermal resistance of graphene thermal interface materials with surface metal liquefaction. Nanomicro Lett. 15, 9 (2022).
Yu, W., Liu, C. & Fan, S. Advances of CNT-based systems in thermal management. Nano Res. 14, 2471–2490 (2021).
Ping, L. et al. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance. Nanoscale 9, 8213–8219 (2017).
Gong, W. et al. Ultracompliant heterogeneous copper–tin nanowire arrays making a supersolder. Nano Lett. 18, 3586–3592 (2018).
Cheng, R. et al. Liquid-infused nanostructured composite as a high-performance thermal interface material for effective cooling. Nat. Commun. 16, 794 (2025).
Barako, M. T. et al. Dense vertically aligned copper nanowire composites as high performance thermal interface materials. ACS Appl. Mater. Interfaces 9, 42067–42074 (2017).
Jing, L. et al. 3D Graphene-nanowire “sandwich” thermal interface with ultralow resistance and stiffness. ACS Nano 17, 2602–2610 (2023).
Wu, K. et al. Mechanochemistry-mediated colloidal liquid metals for electronic device cooling at kilowatt levels. Nat. Nanotechnol. 20, 104–111 (2025).
Ou, K. et al. Phase-change composite elastomers for efficient thermal management at contact interface. Compos. Commun. 52, 102149 (2024).
Bartlett, M. D. et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl Acad. Sci. USA 114, 2143–2148 (2017).
Li, Y. et al. Highly-effective thermoelectric cooling for power semiconductor devices packed with thermal-expansion offset and flame retardancy epoxy resin. Adv. Funct. Mater. 35, 2420944 (2025).
Guo, C. et al. A thermally conductive interface material with tremendous and reversible surface adhesion promises durable cross-interface heat conduction. Mater. Horiz. 9, 1690–1699 (2022).
Zhan, K. et al. Low thermal contact resistance boron nitride nanosheets composites enabled by interfacial arc-like phonon bridge. Nat. Commun. 15, 2905 (2024).
Prasher, R. S., Shipley, J., Prstic, S., Koning, P. & Wang, J. Thermal resistance of particle laden polymeric thermal interface materials. J. Heat Transf. 125, 1170–1177 (2003).
Kantharaj, R., Wassgren, C., Morris, A. & Marconnet, A. Impact of squeezing on the microstructure of thermal interface materials. In Proc. 20th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm) 1241–1249 (IEEE, 2021); https://doi.org/10.1109/ITherm51669.2021.9503232.
Dou, Z., Zhang, B., Xu, P., Fu, Q. & Wu, K. Dry-contact thermal interface material with the desired bond line thickness and ultralow applied thermal resistance. ACS Appl. Mater. Interfaces 15, 57602–57612 (2023).
Tanaka, S., Hojo, F., Takezawa, Y., Kanie, K. & Muramatsu, A. Highly oriented liquid crystalline epoxy film: robust high thermal-conductive ability. ACS Omega 3, 3562–3570 (2018).
He, J., Xian, W., Tao, L., Corrigan, P. & Li, Y. Unstructured self-assembled molecular lamella induces ultrafast thermal transfer through a cathode/separator interphase in lithium-ion batteries. ACS Appl. Mater. Interfaces 14, 56268–56279 (2022).
Xiao, M. & Du, B. X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 1, 34–42 (2016).
Thermal management materials. Henkel Adhesives https://next.henkel-adhesives.com/us/en/applications/thermal-management-materials.html (2025).
Thermal interface materials. Laird Technologies https://www.laird.com/products/thermal-interface-materials (2025).
Thermal interface materials. Parker Chomerics https://ph.parker.com/us/en/divisions/division-chomerics-division-page/category/thermal-interface-materials (2025).
What is considered high voltage—understanding HV classification. Electricity Forum https://toshiba.semicon-storage.com/us/semiconductor/knowledge/faq/mosfet_sic-mosfet/sic-mosfet-003.html (2025).
IEC/EN/UL 62368-1 compliance and standards. Astrodyne TDI https://www.astrodynetdi.com/blog/iec-en-ul-62368-1-compliance-standards (2020).
Yao, C. et al. Thermally conductive hexagonal boron nitride/polymer composites for efficient heat transport. Adv. Funct. Mater. 34, 2405235 (2024).
Chen, J., Huang, X., Sun, B. & Jiang, P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 13, 337–345 (2019).
Iverson, E. T. et al. High thermal conductivity polyelectrolyte nanocomposite electrical insulation thin films. Adv. Funct. Mater. 35, 2420355 (2025).
Wang, Y., Wang, G., Zhang, L. & Ayubi, B. I. Polydopamine-modified boron nitride nanosheet/polyimide composites with enhanced thermal conductivity and electrical insulation for high-frequency applications. ACS Appl. Nano Mater. 8, 7360–7370 (2025).
Yang, K., Zhao, Y. & Liu, X. Enhanced breakdown strength of epoxy composites by constructing dual-interface charge barriers at the micron filler/epoxy matrix interface. Composites B 283, 111602 (2024).
Ren, G. et al. Bulk thermally conductive polyethylene as a thermal interface material. Mater. Horiz. 12, 2957–2964 (2025).
Cui, Y., Qin, Z., Wu, H., Li, M. & Hu, Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 12, 1284 (2021).
Li, S. et al. High thermal conductivity in cubic boron arsenide crystals. Science 361, 579–581 (2018).
Kang, J. S., Li, M., Wu, H., Nguyen, H. & Hu, Y. Experimental observation of high thermal conductivity in boron arsenide. Science 361, 575–578 (2018).
Tian, F. et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018).
Wang, H. et al. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv. Mater. 33, 2103104 (2021).
Wang, C. et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci. Adv. 7, eabe3767 (2021).
[Gaming NB] liquid metal. ASUS https://www.asus.com/support/faq/1042184/ (2024).
Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).
Yang, H. et al. Phonon modes and electron–phonon coupling at the FeSe/SrTiO3 interface. Nature 635, 332–336 (2024).
Thermal interface materials market size, share, trends—2034. Global Market Insights Inc. https://www.gminsights.com/industry-analysis/thermal-interface-materials-market (2023).
Bergquist sil pad tsp 3500. Henkel Adhesives https://www.henkel-adhesives.com/cn/zh/product/thermal-sil-pad-materials/bergquist_sil_padtsp3500.html (2018).
TC series electrically insulating thermal sheet. AOK Technologies https://www.aok-technologies.com/products/TC-Series-Electrically-Insulating-Thermal-Sheet.html (2025).
Tgard 5000. Laird Technologies https://www.laird.com/products/thermal-interface-materials/thermally-conductive-and-electrically-isolating-insulators/tgard-5000 (2025).
Sil pads. Henkel Adhesives https://www.henkel-adhesives.com/ca/en/products/thermal-management-materials/sil-pads.html (2019).
PTM7950 product data sheet. Honeywell https://www.solstice.com/us/en/products/advanced-semiconductor-materials/thermal-management/phase-change-materials/ptm7950#resources (2022).
THERM-A-GAP GEL 50TBL datasheet. Parker Chomerics https://discover.parker.com/chomerics-gel50tbl (2024).
DOWSIL tc-5026 thermally conductive compound. Dow https://www.dow.com/zh-cn/pdp.dowsil-tc-5026-thermally-conductive-compound.04063597z.html (2017).
Shin-Etsu g-787 thermal grease. Shin-Etsu Chemical Co. https://www.silicone.jp/products/notice/142/index2.shtml (2025).
Bai, J. G., Zhang, Z. Z., Lu, G.-Q. & Hasselman, D. P. H. Measurement of solder/copper interfacial thermal resistance by the flash technique. Int. J. Thermophys. 26, 1607–1615 (2005).
Graphene thermal pad (HFC-03E). HFC https://www.hfcsz.com/products-detail/id-27.html (2024).
Thermal Grizzly Conductonaut liquid metal. Stealkey Customs https://stealkeycustoms.de/en/products/thermal-grizzly-conductonaut-flusigmetall-warmeleitpaste-73-w-mk-1g (2025).
Acknowledgements
K.W. acknowledges the support by the National Natural Science Foundation of China (52522304 and 52373042), and the Institutional Research Fund from Sichuan University (2024SCUQJTX015). G.Y. acknowledges the support from Welch Foundation Award F-1861, Norman Hackerman Award in Chemical Research, and John J. McKetta Centennial Energy Chair endowment from UT Austin.
Author information
Authors and Affiliations
Contributions
G.Y. and K.W. conceived of and guided the writing of this article. Z.D. and C.L. helped with the initial literature study and figure design. All the authors contributed to the writing, editing and revising of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Electronics thanks Xingyi Huang, Sheng Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dou, Z., Lei, C., Wu, K. et al. The development of thermal interface materials. Nat Electron 8, 1146–1155 (2025). https://doi.org/10.1038/s41928-025-01543-7
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41928-025-01543-7


