Databases of computational results hold high promise for accelerating catalysis research. Still, many challenges remain and consensus on facets such as metadata, reliability and curation is crucial to transform the hype into an attractive technology.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Polyethylene hydrogenolysis to liquid products over bimetallic catalysts with favorable environmental footprint and economics
Nature Communications Open Access 10 November 2025
-
Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction
Nature Open Access 14 May 2025
-
Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2
Nature Communications Open Access 10 April 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout
References
NIST Chemistry WebBook. NIST Standard Reference Database Number 69 (NIST, accessed 26 May 2018); https://webbook.nist.gov/chemistry
Protein Data Bank (RCSB, accessed 26 May 2018); https://www.rcsb.org
The Cambridge Structural Database (CCDC, accessed 26 May 2018); https://www.ccdc.cam.ac.uk
Inorganic Crystal Structure Database (FIZ Karlsruhe, accessed 26 May 2018); http://www2.fiz-karlsruhe.de/icsd_home.html
Lejaeghere, K. et al. Science 351, aad3000 (2016).
Ohno, K. & Morokuma, K. Quantum Chemistry Literature Data Base—Bibliography of Ab Initio Calculations for 1978–1980 (Elsevier, Amsterdam, 1982).
QCLDB II (QCDB Group, accessed 25 May 2018); http://qcldb2.ims.ac.jp
Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101 Release 19 (NIST, accessed 26 May 2018); https://cccbdb.nist.gov
Hobza, P. Benchmark Energy and Geometry Database (Institute of Organic Chemistry and Biochemistry, Prague, accessed 26 May 2018); http://www.begdb.com
Databases Truhlar Research Group (accessed 26 May 2018); http://truhlar.chem.umn.edu/content/databases
Ghahremanpour, M. M., van Maaren, P. J. & van der Spoel, D. Sci. Data 5, 180062 (2018).
Nakata, M. & Shimazaki, T. J. Chem. Inf. Model 57, 1300–1308 (2017).
Open Babel: The Open Source Chemistry Toolbox (accessed 26 May 2018); http://openbabel.org/wiki/Main_Page
Murray-Rust, P. & Rzepa, H. S. J. Cheminformatics 3, 44 (2011).
Adams, S. et al. J. Cheminformatics 3, 38 (2011).
Hummelshøj, J. S., Abild-Pedersen, F., Studt, F., Bligaard, T. & Nørskov, J. K. Angew. Chem. Int. Ed. 51, 272–274 (2011).
Laloo, J. Z. A., Laloo, N., Rhyman, L. & Ramassami, P. J. Comput. Aided Mol. Des. 31, 667–673 (2017).
Rodríguez-Guerra Pedregal, J., Gómez-Orellana, P. & Maréchal, J.-D. J. Chem. Inf. Model. 58, 561–564 (2018).
O’Boyle, N. M., Tenderholt, A. L. & Langner, K. M. J. Comput. Chem. 29, 839–845 (2008).
Materials Genome Initiative (accessed 29 May 2018); https://mgi.gov
The Materials Project (accessed 30 August 2018); https://www.materialsproject.org
Tabor, D. P. et al. Nat. Rev. Mater. 3, 5 (2018).
The European Materials Modelling Council (accessed 30 August 2018); https://emmc.info
de Bass, A. F. What Makes a Material Function (EU, 2017)
NOMAD Repository (NOMAD Laboratory, accessed 23 May 2018); https://nomad-repository.eu
Automated Interactive Infrastructure and Database for Computational Science (accessed 25 May 2018); http://www.aiida.net
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. Comput. Mater. Sci. 111, 218–230 (2016).
Web platform “Materials Cloud” could help industry streamline research efforts. Marvel http://nccr-marvel.ch/highlights/2018-05-web-platform-materials-cloud-could-help-industry (30 May 2018).
Computational Materials Repository (CAMd, accessed 14 September 2018); https://cmr.fysik.dtu.dk
Álvarez-Moreno, M. et al. J. Chem. Inf. Model. 55, 95 (2015).
ioChem-BD (accessed 29 May 2018); http://www.iochem-bd.org
Chen, Z. Nat. Nanotech 13, 702–707 (2018).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Nature 559, 547–555 (2018).
Wang, B., Dobosh, P. A., Chalk, S., Sopek, M. & Ostlund, N. S. J. Phys. Chem. A 121, 298–307 (2016).
Rossi, E. et al. J. Comput. Chem. 35, 611–621 (2014).
Ghiringhelli, L. M. npj Comput. Mater. 3, 46 (2017).
The Molecular Sciences Software Institute (accessed 30 August 2018); https://molssi.org
Schütt, K. T., Arbabzadah, F., Chmiela, S. & Müller, K.-R. Nat. Commun. 8, 13890 (2017).
Janet, J. P. & Kulik, H. J. Chem. Sci. 8, 5137–5152 (2017).
Ferguson, A. L. ACS Cent. Sci. 4, 938–941 (2018).
Gómez-Bombarelli, R. et al. ACS Cent. Sci. 4, 268–276 (2018).
Nandy, A., Duan, C., Janet, J. P., Gugler, S. & Kulik, H. Preprint at https://doi.org/10.26434/chemrxiv.6987074.v1 (2018).
Jones, G. Nat. Catal. 1, 311–313 (2018).
Wu, Z. et al. Chem. Sci. 9, 513–530 (2018).
Lemonick, S. Is machine learning overhyped? Chem. Eng. News https://cen.acs.org/physical-chemistry/computational-chemistry/machine-learning-overhyped/96/i34 (2018).
PASC18 panel discussion. Is HPC facing a game change? YouTube https://www.youtube.com/watch?v=mTqzCvm0G5c (16 July 2018).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bo, C., Maseras, F. & López, N. The role of computational results databases in accelerating the discovery of catalysts. Nat Catal 1, 809–810 (2018). https://doi.org/10.1038/s41929-018-0176-4
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41929-018-0176-4
This article is cited by
-
Developing machine learning for heterogeneous catalysis with experimental and computational data
Nature Reviews Chemistry (2025)
-
Encapsulated Co–Ni alloy boosts high-temperature CO2 electroreduction
Nature (2025)
-
Polyethylene hydrogenolysis to liquid products over bimetallic catalysts with favorable environmental footprint and economics
Nature Communications (2025)
-
Low-nuclearity CuZn ensembles on ZnZrOx catalyze methanol synthesis from CO2
Nature Communications (2024)
-
Chemical reaction network knowledge graphs: the OntoRXN ontology
Journal of Cheminformatics (2022)