Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Critical insights into the steam electrolysis electrode in protonic ceramic cells for hydrogen production

Abstract

Intermediate-temperature protonic ceramic electrolysis cells (PCECs), which combine the benefits of both lower- and higher-temperature electrolysis, are among the most efficient technologies for the production of green hydrogen. To ensure economic competitiveness and broad adoption, ongoing innovations in cell materials are essential to improve durability and reduce costs. The water oxidation half-reaction at the anode is a key area for improvement as it is a major contributor to performance degradation and efficiency loss in PCECs. Current anode designs, which are largely derived from solid oxide electrolysis cells, fail to address the specific requirements for PCECs under realistic operating conditions. This Perspective highlights the unique challenges faced by PCEC anodes, focusing on the impact of high steam concentrations and the critical role of proton-coupled electron-transfer mechanisms—factors that are absent in solid oxide electrolysis cells. Furthermore, we explore design principles for advancing anodes tailored for PCECs, offering guidance for future research and development in this promising field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: IT PCECs for green hydrogen production.
Fig. 2: Illustrative comparison of oxygen electrode operating conditions in SOECs and PCECs.
Fig. 3: PCET mechanisms in water oxidation.
Fig. 4: Development of advanced oxygen electrode materials in PCECs.

Similar content being viewed by others

References

  1. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, W. et al. Water electrolysis toward elevated temperature: advances, challenges and frontiers. Chem. Rev. 123, 7119–7192 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Hauch, A. et al. Recent advances in solid oxide cell technology for electrolysis. Science 370, eaba6118 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, F. et al. Lowering the operating temperature of protonic ceramic electrochemical cells to <450 °C. Nat. Energy 8, 1145–1157 (2023).

    Article  CAS  Google Scholar 

  5. Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018).

    Article  CAS  Google Scholar 

  6. Yu, H. et al. Lowering the temperature of solid oxide electrochemical cells using triple-doped bismuth oxides. Adv. Mater. 36, 2306205 (2024).

    Article  CAS  Google Scholar 

  7. Duan, C., Huang, J., Sullivan, N. & O’Hayre, R. Proton-conducting oxides for energy conversion and storage. Appl. Phys. Rev. 7, 011314 (2020).

    Article  CAS  Google Scholar 

  8. Zhai, S. et al. A combined ionic Lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells. Nat. Energy 7, 866–875 (2022).

    Article  CAS  Google Scholar 

  9. Wang, Z. et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes. Nat. Catal. 5, 777–787 (2022).

    Article  Google Scholar 

  10. Choi, M. et al. Exceptionally high performance of protonic ceramic fuel cells with stoichiometric electrolytes. Energy Environ. Sci. 14, 6476–6483 (2021).

    Article  CAS  Google Scholar 

  11. An, H. et al. An unprecedented vapor-phase sintering activator for highly refractory proton-conducting oxides. ACS Energy Lett. 7, 4036–4044 (2022).

    Article  CAS  Google Scholar 

  12. Liu, F. & Duan, C. in High-Temperature Electrolysis: From Fundamentals to Applications (eds Sitte, W. & Merkle, R.) Ch. 14 (IOP Publishing, 2023); https://doi.org/10.1088/978-0-7503-3951-3ch14

  13. Tao, H. B. et al. The gap between academic research on proton exchange membrane water electrolysers and industrial demands. Nat. Nanotechnol. 19, 1074–1076 (2024).

    Article  CAS  PubMed  Google Scholar 

  14. Subotić, V. & Hochenauer, C. Analysis of solid oxide fuel and electrolysis cells operated in a real-system environment: State-of-the-health diagnostic, failure modes, degradation mitigation and performance regeneration. Prog. Energy Combust. Sci. 93, 101011 (2022).

    Article  Google Scholar 

  15. Wang, Y. et al. A review of progress in proton ceramic electrochemical cells: material and structural design, coupled with value-added chemical production. Energy Environ. Sci. 16, 5721–5770 (2023).

    Article  CAS  Google Scholar 

  16. Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, F., Ding, D. & Duan, C. Protonic ceramic electrochemical cells for synthesizing sustainable chemicals and fuels. Adv. Sci. 10, 2206478 (2023).

    Article  CAS  Google Scholar 

  18. Li, M. et al. Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nat. Catal. 4, 274–283 (2021).

    Article  CAS  Google Scholar 

  19. Li, M. et al. Activating nano-bulk interplays for sustainable ammonia electrosynthesis. Mater. Today 60, 31–40 (2022).

    Article  Google Scholar 

  20. Clark, D. et al. Single-step hydrogen production from NH3, CH4, and biogas in stacked proton ceramic reactors. Science 376, 390–393 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Pei, K. et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nat. Commun. 13, 2207 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu, W. et al. 3D self-architectured steam electrode enabled efficient and durable hydrogen production in a proton-conducting solid oxide electrolysis cell at temperatures lower than 600 °C. Adv. Sci. 5, 1800360 (2018).

    Article  Google Scholar 

  23. Song, Y., Yi, Y., Ran, R., Zhou, W. & Wang, W. Recent advances in barium cobaltite-based perovskite oxides as cathodes for intermediate-temperature solid oxide fuel cells. Small 20, 2406627 (2024).

    Article  CAS  Google Scholar 

  24. Zou, D. et al. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 10, 5381–5390 (2022).

    Article  CAS  Google Scholar 

  25. Zhang, W. et al. A synergistic three-phase, triple-conducting air electrode for reversible proton-conducting solid oxide cells. ACS Energy Lett. 8, 3999–4007 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He, F. et al. Phase segregation of a composite air electrode unlocks the high performance of reversible protonic ceramic electrochemical cells. Energy Environ. Sci. 17, 3898–3907 (2024).

    Article  CAS  Google Scholar 

  27. Chen, X. et al. Synergistic bulk and surface engineering for expeditious and durable reversible protonic ceramic electrochemical cells air electrode. Adv. Mater. 36, 2403998 (2024).

    Article  CAS  Google Scholar 

  28. Regalado Vera, C. Y. et al. Improving proton conductivity by navigating proton trapping in high scandium-doped barium zirconate electrolytes. Chem. Mater. 35, 5341–5352 (2023).

    Article  CAS  Google Scholar 

  29. Rowberg, A. J. E., Li, M., Ogitsu, T. & Varley, J. B. Incorporation of protons and hydroxide species in BaZrO3 and BaCeO3. Mater. Adv. 4, 6233–6243 (2023).

    Article  CAS  Google Scholar 

  30. Rowberg, A. J. E., Li, M., Ogitsu, T. & Varley, J. B. Polarons and electrical leakage in BaZrO3 and BaCeO3. Phys. Rev. Mater. 7, 015402 (2023).

    Article  CAS  Google Scholar 

  31. Jang, I. et al. Electrocatalysis in solid oxide fuel cells and electrolyzers. Chem. Rev. 124, 8233–8306 (2024).

    Article  CAS  PubMed  Google Scholar 

  32. Li, M., Hua, B., Chen, J., Zhong, Y. & Luo, J.-L. Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers. Nano Energy 57, 186–194 (2019).

    Article  CAS  Google Scholar 

  33. Koo, B. et al. Sr segregation in perovskite oxides: why it happens and how it exists. Joule 2, 1476–1499 (2018).

    Article  CAS  Google Scholar 

  34. Norby, T. Protonic conduction on oxide surfaces—role and applications in electrochemical energy conversion. Prog. Energy 6, 043002 (2024).

    Article  CAS  Google Scholar 

  35. Su, H. & Hu, Y. H. Degradation issues and stabilization strategies of protonic ceramic electrolysis cells for steam electrolysis. Energy Sci. Eng. 10, 1706–1725 (2022).

    Article  CAS  Google Scholar 

  36. Pan, J., Ye, Y., Zhou, M., Sun, X. & Chen, Y. Revealing the impact of steam concentration on the activity and stability of double-perovskite air electrodes for proton-conducting electrolysis cells. Energy Fuels 36, 12253–12260 (2022).

    Article  CAS  Google Scholar 

  37. Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Huan, D. et al. New, efficient, and reliable air electrode material for proton-conducting reversible solid oxide cells. ACS Appl. Mater. Interfaces 10, 1761–1770 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Tang, W. et al. An unbalanced battle in excellence: revealing effect of Ni/Co occupancy on water splitting and oxygen reduction reactions in triple-conducting oxides for protonic ceramic electrochemical cells. Small 18, 2201953 (2022).

    Article  CAS  Google Scholar 

  40. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710 (2013).

    Article  CAS  Google Scholar 

  41. Tyburski, R., Liu, T., Glover, S. D. & Hammarström, L. Proton-coupled electron transfer guidelines, fair and square. J. Am. Chem. Soc. 143, 560–576 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, J. Oxygen evolution reaction in energy conversion and storage: eesign strategies under and beyond the energy scaling relationship. Nanomicro Lett. 14, 112 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, J. et al. Modifying redox properties and local bonding of Co3O4 by CeO2 enhances oxygen evolution catalysis in acid. Nat. Commun. 12, 3036 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, Y. et al. Tuning proton-coupled electron transfer by crystal orientation for efficient water oxidization on double perovskite oxides. Nat. Commun. 11, 4299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ding, H. et al. Self-sustainable protonic ceramic electrochemical cells using a triple conducting electrode for hydrogen and power production. Nat. Commun. 11, 1907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bian, W. et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature 604, 479–485 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, Y., Chen, Y., Yan, M. & Chen, F. Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy. J. Power Sources 283, 464–477 (2015).

    Article  CAS  Google Scholar 

  49. Choi, M. et al. Interface engineering to operate reversible protonic ceramic electrochemical cells below 500 °C. Adv. Energy Mater. 15, 2400124 (2024).

    Article  Google Scholar 

  50. Osipov, A. A. High-temperature Raman spectroscopy. Pure Appl. Chem. 91, 1749–1756 (2019).

    Article  CAS  Google Scholar 

  51. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    Article  CAS  Google Scholar 

  52. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  53. Resasco, J. et al. Enhancing the connection between computation and experiments in electrocatalysis. Nat. Catal. 5, 374–381 (2022).

    Article  Google Scholar 

  54. An, H. et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm−2 at 600 °C. Nat. Energy 3, 870–875 (2018).

    Article  CAS  Google Scholar 

  55. Song, Y. et al. Self-assembled triple-conducting nanocomposite as a superior protonic ceramic fuel cell cathode. Joule 3, 2842–2853 (2019).

    Article  CAS  Google Scholar 

  56. Bae, K. et al. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8, 14553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bae, K., Kim, D. H., Choi, H. J., Son, J.-W. & Shim, J. H. High-performance protonic ceramic fuel cells with 1 µm thick Y:Ba(Ce, Zr)O3 electrolytes. Adv. Energy Mater. 8, 1801315 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the proton-conducting solid oxide electrolysis cells (P-SOEC) lab call project and the HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the US Department of Energy (USDOE); the Office of Energy Efficiency and Renewable Energy (EERE); the Hydrogen and Fuel Cell Technologies Office (HFTO) under the USDOE Idaho Operations Office under contract no. DE-AC07-05ID14517. M.L. is grateful for the support from the Idaho National Laboratory’s Laboratory Directed Research and Development program (project no. 23A1070-027FP) under the USDOE Idaho Operations Office under contract no. DE-AC07-05ID14517.

Author information

Authors and Affiliations

Contributions

D.D. conceived the idea of this Perspective. M.L. and F.L. wrote the first draught of the paper. All authors contributed to reviewing and editing the manuscript.

Corresponding authors

Correspondence to Meng Li or Dong Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Wei Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, F. & Ding, D. Critical insights into the steam electrolysis electrode in protonic ceramic cells for hydrogen production. Nat Catal 8, 293–300 (2025). https://doi.org/10.1038/s41929-025-01313-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01313-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing