Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis

Abstract

Carboxylic ester motifs are prevalent in biological, chemical and materials sciences, and the asymmetric α-functionalization of simple esters plays a crucial role in the field of organic synthesis. Here we present a versatile electricity-driven asymmetric Lewis base catalysis strategy for the oxidative radical cross-coupling of simple esters with silyl enol ethers. This approach integrates the electrochemical anodic oxidation process with chiral isothiourea catalysis, enabling a polarity inversion at the nucleophilic carbon of the enolate to trigger the formation of a chiral isothiourea-bound α-carbonyl radical species from a C1-ammonium enolate. The combination of asymmetric Lewis base catalysis and electrochemistry unlocks mild oxidative radical coupling reactions, achieving up to 98% enantiomeric excess and demonstrating broad substrate compatibility. This work underscores the synthetic potential of the approach and provides a platform for advancing asymmetric electrosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhancing the asymmetric radical modes of Lewis base catalysis with electricity.
Fig. 2: Optimization of the reaction conditions.
Fig. 3: Mechanistic investigations.
Fig. 4: Substrate scope for silyl enol ethers.
Fig. 5: Substrate scope of acetic acid pentafluorophenyl esters.
Fig. 6: Gram-scale synthesis and post-functionalizations.
Fig. 7: DFT calculations and proposed mechanism.

Similar content being viewed by others

Data availability

Crystallographic data for the structure reported in this Article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition number CCDC 2378242 (3ad). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The atomic coordinates from DFT calculations are provided in the Supplementary Data. All other data supporting the findings of this study, including experimental procedures, compound characterization, NMR and HPLC, are available within the Article and its Supplementary Information or from the authors.

References

  1. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  2. Merad, J., Pons, J.-M., Chuzel, O. & Bressy, C. Enantioselective catalysis by chiral isothioureas. Eur. J. Org. Chem. 2016, 5589–5610 (2016).

    Article  CAS  Google Scholar 

  3. Birman, V. B. Amidine based catalysts (ABCs): design, development, and applications. Aldrichimica Acta 49, 23–33 (2016).

    CAS  Google Scholar 

  4. McLaughlin, C. & Smith, A. D. Generation and reactivity of C(1)-ammonium enolates by using isothiourea catalysis. Chem. Eur. J. 27, 1533–1555 (2021).

    Article  PubMed  CAS  Google Scholar 

  5. West, T. H., Daniels, D. S. B., Slawin, A. M. Z. & Smith, A. D. An isothiourea-catalyzed asymmetric [2,3]-rearrangement of allylic ammonium ylides. J. Am. Chem. Soc. 136, 4476–4479 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Arokianathar, J. N., Frost, A. B., Slawin, A. M. Z., Stead, D. & Smith, A. D. Isothiourea-catalyzed enantioselective addition of 4-nitrophenyl esters to iminium ions. ACS Catal. 8, 1153–1160 (2018).

    Article  CAS  Google Scholar 

  7. Zhao, F. et al. Enantioselective synthesis of α-aryl-β2-amino-esters by cooperative isothiourea and Brønsted acid catalysis. Angew. Chem. Int. Ed. 60, 11892–11900 (2021).

    Article  CAS  Google Scholar 

  8. Schwarz, K. J., Amos, J. L., Klein, J. C., Do, D. T. & Snaddon, T. N. Uniting C1-ammonium enolates and transition metal electrophiles via cooperative catalysis: the direct asymmetric α-allylation of aryl acetic acid esters. J. Am. Chem. Soc. 138, 5214–5217 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Schwarz, K. J., Yang, C., Fyfe, J. W. B. & Snaddon, T. N. Enantioselective α-benzylation of acyclic esters using π-extended electrophiles. Angew. Chem. Int. Ed. 57, 12102–12105 (2018).

    Article  CAS  Google Scholar 

  10. Jiang, X., Beiger, J. J. & Hartwig, J. F. Stereodivergent allylic substitutions with aryl acetic acid esters by synergistic iridium and Lewis base catalysis. J. Am. Chem. Soc. 139, 87–90 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Zhu, M., Wang, P., Zhang, Q., Tang, W. & Zi, W. Diastereodivergent Aldol-type coupling of alkoxyallenes with pentafluorophenyl esters enabled by synergistic palladium/chiral Lewis base catalysis. Angew. Chem. Int. Ed. 61, e202207621 (2022).

  12. Kim, B., Kim, Y. & Lee, S. Y. Stereodivergent carbon–carbon bond formation between iminium and enolate intermediates by synergistic organocatalysis. J. Am. Chem. Soc. 143, 73–79 (2021).

    Article  PubMed  CAS  Google Scholar 

  13. Li, C.-J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Girard, S. A., Knauber, T. & Li, C.-J. The cross-dehydrogenative coupling of Csp3—H bonds: a versatile strategy for C—C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

    Article  CAS  Google Scholar 

  15. Song, J., Zhang, Z.-J., Chen, S.-S., Fan, T. & Gong, L.-Z. Lewis base/copper cooperatively catalyzed asymmetric α-amination of esters with diaziridinone. J. Am. Chem. Soc. 140, 3177–3180 (2018).

    Article  PubMed  CAS  Google Scholar 

  16. Hartley, W. C., Schiel, F., Ermini, E. & Melchiorre, P. Lewis base-catalysed enantioselective radical conjugate addition for the synthesis of enantioenriched pyrrolidinones. Angew. Chem. Int. Ed. 61, e202204735 (2022).

    Article  CAS  Google Scholar 

  17. del Río-Rodríguez, R. et al. Isothiourea-catalysed enantioselective radical conjugate addition under batch and flow conditions. Chem. Commun. 58, 7277–7280 (2022).

    Article  Google Scholar 

  18. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    Article  CAS  Google Scholar 

  23. Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    Article  PubMed  CAS  Google Scholar 

  24. Meyer, T., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    Article  CAS  Google Scholar 

  25. Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    Article  CAS  Google Scholar 

  26. Zhang, Q., Chang, X., Peng, L. & Guo, C. Asymmetric Lewis acid catalyzed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).

    Article  CAS  Google Scholar 

  27. Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).

    Article  PubMed  CAS  Google Scholar 

  28. Liang, K., Zhang, Q. & Guo, C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. Sci. Adv. 8, eadd7134 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhang, Q., Liang, K. & Guo, C. Enantioselective nickel-catalyzed electrochemical radical allylation. Angew. Chem. Int. Ed. 61, e202210632 (2022).

    Article  CAS  Google Scholar 

  30. Liang, K., Zhang, Q. & Guo, C. Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination. Nat. Synth. 2, 1184–1193 (2023).

    Article  CAS  Google Scholar 

  31. Zhang, Q., Zhang, J., Zhu, W., Lu, R. & Guo, C. Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions. Nat. Commun. 15, 4477 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, J., Zhu, W., Chen, Z., Zhang, Q. & Guo, C. Dual-catalyzed stereodivergent electrooxidative homocoupling of benzoxazolyl acetate. J. Am. Chem. Soc. 146, 1522–1531 (2024).

    Article  PubMed  CAS  Google Scholar 

  33. Mazzarella, D. et al. Electrochemical asymmetric radical functionalization of aldehydes enabled by a redox shuttle. Angew. Chem. Int. Ed. 63, e202401361 (2024).

    Article  CAS  Google Scholar 

  34. Ghosh, M., Shinde, V. S. & Rueping, M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem. 15, 2710–2746 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).

    Article  PubMed  CAS  Google Scholar 

  36. Chang, X., Zhang, Q. & Guo, C. Asymmetric electrochemical transformations. Angew. Chem. Int. Ed. 59, 12612–12622 (2020).

    Article  CAS  Google Scholar 

  37. Fu, N., Li, L., Yang, Q. & Luo, S. Catalytic asymmetric electrochemical oxidative coupling of tertiary amines with simple ketones. Org. Lett. 19, 2122–2125 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. DeLano, T. J. & Reisman, S. E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis. ACS Catal. 9, 6751–6754 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C–H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).

    Article  CAS  Google Scholar 

  41. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Article  CAS  Google Scholar 

  42. Gao, P.-S. et al. CuII/TEMPO-catalyzed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines through Shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).

    Article  CAS  Google Scholar 

  43. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Zhou, P., Li, W., Lan, J. & Zhu, T. Electroredox carbene organocatalysis with iodide as promoter. Nat. Commun. 13, 3827 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ding, W., Li, M., Fan, J. & Cheng, X. Palladium-catalyzed asymmetric allylic 4-pyridinylation via electroreductive substitution reaction. Nat. Commun. 13, 5642 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Tan, X., Wang, Q. & Sun, J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat. Commun. 14, 357 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gao, S., Wang, C., Yang, J. & Zhang, J. Cobalt-catalyzed enantioselective intramolecular reductive cyclization via electrochemistry. Nat. Commun. 14, 1301 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    Article  Google Scholar 

  50. Hu, X., Cheng-Sánchez, I., Cuesta-Galisteo, S. & Nevado, C. Nickel-catalyzed enantioselective electrochemical reductive cross-coupling of aryl aziridines with alkenyl bromides. J. Am. Chem. Soc. 145, 6270–6279 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gao, Y., Zhang, B., He, J. & Baran, P. S. Ni-electrocatalytic enantioselective doubly decarboxylative C(sp3)–C(sp3) cross coupling. J. Am. Chem. Soc. 145, 11518–11523 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yao, Q.-J., Huang, F.-R., Chen, J.-H., Zhong, M.-Y. & Shi, B.-F. Enantio- and regioselective electrooxidative cobalt-catalyzed C–H/N–H annulation with alkenes. Angew. Chem. Int. Ed. 62, e202218533 (2023).

    Article  CAS  Google Scholar 

  53. Sibi, M. P. & Porter, N. A. Enantioselective free radical reactions. Acc. Chem. Res. 32, 163–171 (1999).

    Article  CAS  Google Scholar 

  54. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  PubMed  CAS  Google Scholar 

  55. Sibi, M. P., Ji, J., Wu, J. H., Gürtler, S. & Porter, N. A. Chiral Lewis acid catalysis in radical reactions: enantioselective conjugate radical additions. J. Am. Chem. Soc. 118, 9200–9201 (1996).

    Article  CAS  Google Scholar 

  56. Sibi, M. P., Ji, J., Sausker, J. B. & Jasperse, C. P. Free radical-mediated intermolecular conjugate additions. Effect of the Lewis acid, chiral auxiliary, and additives on diastereoselectivity. J. Am. Chem. Soc. 121, 7517–7526 (1999).

    Article  CAS  Google Scholar 

  57. Sibi, M. P. & Chen, J. Enantioselective tandem radical reactions: vicinal difunctionalization in acyclic systems with control over relative and absolute stereochemistry. J. Am. Chem. Soc. 123, 9472–9473 (2001).

    Article  PubMed  CAS  Google Scholar 

  58. Sibi, M. P., Zimmerman, J. & Rheault, T. Enantioselective conjugate radical addition to β-acyloxy acrylate acceptors: an approach to acetate Aldol-type products. Angew. Chem. Int. Ed. 42, 4521–4523 (2003).

    Article  CAS  Google Scholar 

  59. Sibi, M. P., Petrovic, G. & Zimmerman, J. Enantioselective radical addition/trapping reactions with α,β-disubstituted unsaturated imides. Synthesis of anti-propionate aldols. J. Am. Chem. Soc. 127, 2390–2391 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. Beeson, T. D., Mastracchio, A., Hong, J.-B., Ashton, K. & MacMillan, D. W. C. Enantioselective organocatalysis using SOMO activation. Science 316, 582–585 (2007).

    Article  PubMed  CAS  Google Scholar 

  61. Sibi, M. P. & Hasegawa, M. Organocatalysis in radical chemistry. Enantioselective α-oxyamination of aldehydes. J. Am. Chem. Soc. 129, 4124–4125 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Mastracchio, A., Warkentin, A. A., Walji, A. M. & MacMillan, D. W. C. Direct and enantioselective α-allylation of ketones via singly occupied molecular orbital (SOMO) catalysis. Proc. Natl Acad. Sci. USA 107, 20648–20651 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao, F. et al. Enantioselective aza-ene-type reactions of enamides with gold carbenes generated from α-diazoesters. Angew. Chem. Int. Ed. 56, 3247–3251 (2017).

    Article  CAS  Google Scholar 

  64. Birman, V. B., Li, X. & Han, Z. Nonaromatic amidine derivatives as acylation catalysts. Org. Lett. 9, 37–40 (2007).

    Article  PubMed  CAS  Google Scholar 

  65. Liu, P., Yang, X., Birman, V. B. & Houk, K. N. Origin of enantioselectivity in benzotetramisole-catalyzed dynamic kinetic resolution of azlactones. Org. Lett. 14, 3288–3291 (2012).

    Article  PubMed  CAS  Google Scholar 

  66. Greenhalgh, M. D. et al. A C=O···isothiouronium interaction dictates enantiodiscrimination in acylative kinetic resolutions of tertiary heterocyclic alcohols. Angew. Chem. Int. Ed. 57, 3200–3206 (2018).

    Article  CAS  Google Scholar 

  67. Young, C. M. et al. The importance of 1,5-oxygen···chalcogen interactions in enantioselective isochalcogenourea catalysis. Angew. Chem. Int. Ed. 59, 3705–3710 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (22071229 and 22471002) and the Anhui Provincial Natural Science Foundation (2308085Y12).

Author information

Authors and Affiliations

Contributions

J.S. conceived the project. N.L. performed the experiments and analysed the data. X.Y. and Y.L. synthesized some of the substrates and catalysts. All authors discussed the results and prepared the paper.

Corresponding author

Correspondence to Jin Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1–8.

Supplementary Data 1

The atomic coordinates of the optimized computational models studied in this paper.

Supplementary Data 2

CIF of compound 3ad.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Ye, X., Liu, Y. et al. Enantioselective radical α-enolation of esters via electrochemical chiral isothiourea catalysis. Nat Catal 8, 957–967 (2025). https://doi.org/10.1038/s41929-025-01408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01408-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing