Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantum computing for faster enzyme discovery and engineering

Abstract

Quantum computing, by leveraging the unique principles of quantum mechanics, offers transformative potential for biocatalysis and related disciplines. Compared to classical algorithms, quantum algorithms deliver immense acceleration to quantum computers, making them suited for tackling computationally challenging problems such as simulating many-body biomolecular systems or enzyme-catalysed chemical reactions. However, current quantum hardware is constrained by noise, limited qubit coherence and high error rates, restricting its capacity to model complex biochemical phenomena. Here we explore the rapidly advancing landscape of quantum computing and its future applications in the discovery and rational engineering of biocatalysts. We identify key areas where quantum algorithms could surpass classical limitations, including the quantum chemistry-based design of biocatalysts with enhanced catalytic activity or selectivity, parallelized mining of novel enzymes, accurate ancestral sequence reconstruction, and combinatorial in silico protein evolution. Overcoming current hardware limitations could unlock transformative advances in both fundamental enzymology and industrial bioprocessing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline and envisaged applications of quantum computing in biocatalysis.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge Univ. Press, 2010).

  2. Chandran, A. Biopharma foresees a ‘quantum advantage’: they could be right. Nat. Biotechnol. 42, 690–692 (2024).

    Article  PubMed  CAS  Google Scholar 

  3. Kissman, E. N. et al. Expanding chemistry through in vitro and in vivo biocatalysis. Nature 631, 37–48 (2024).

    Article  PubMed  CAS  Google Scholar 

  4. Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

    Article  PubMed  CAS  Google Scholar 

  5. Schumacher, B. Quantum coding. Phys. Rev. A 51, 2738–2747 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Besedin, I. et al. Realizing lattice surgery on two distance–three repetition codes with superconducting qubits. Preprint at https://doi.org/10.48550/arXiv.2501.04612 (2025).

  7. Matsunaga, H. & Ho, L. B. Detecting and protecting entanglement through nonlocality, variational entanglement witness and nonlocal measurements. Phys. Rev. Res. 7, 013239 (2025).

    Article  CAS  Google Scholar 

  8. Kitaev, A. Y. Quantum measurements and the Abelian Stabilizer Problem. Preprint at https://doi.org/10.48550/arXiv.quant-ph/9511026 (1995).

  9. Acharya, R. et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature 614, 676–681 (2023).

    Article  Google Scholar 

  10. Bogobowicz, M. et al. Quantum Technology Sees Record Investments, Progress on Talent Gap (McKinsey, 2023); https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/quantum-technology-sees-record-investments-progress-on-talent-gap

  11. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    Article  Google Scholar 

  12. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  Google Scholar 

  13. Babbush, R. et al. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX Quantum 2, 010103 (2021).

    Article  Google Scholar 

  14. Aaronson, S. Read the fine print. Nat. Phys. 11, 291–293 (2015).

    Article  CAS  Google Scholar 

  15. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  PubMed  CAS  Google Scholar 

  16. Zhao, X.-H. et al. Leapfrogging Sycamore: harnessing 1432 GPUs for 7× faster quantum random circuit sampling. Natl Sci. Rev. 12, nwae317 (2025).

    Article  PubMed  Google Scholar 

  17. Ball, P. Physicists in China challenge Google’s ‘quantum advantage’. Nature 588, 380 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Acharya, R. et al. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article  Google Scholar 

  19. King, A. D. et al. Beyond-classical computation in quantum simulation. Science 388, 199–204 (2025).

    Article  PubMed  CAS  Google Scholar 

  20. Pal, S., Bhattacharya, M., Lee, S.-S. & Chakraborty, C. Quantum computing in the next-generation computational biology landscape: from protein folding to molecular dynamics. Mol. Biotechnol. 66, 163–178 (2024).

    Article  PubMed  CAS  Google Scholar 

  21. Doga, H. et al. A perspective on protein structure prediction using quantum computers. J. Chem. Theory Comput. 20, 3359–3378 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Nałęcz-Charkiewicz, K., Charkiewicz, K. & Nowak, R. M. Quantum computing in bioinformatics: a systematic review mapping. Brief. Bioinform. 25, bbae391 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu, H. et al. Prospects of quantum computing for molecular sciences. Mater. Theory 6, 11 (2022).

    Article  Google Scholar 

  24. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5, 4213 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Grimsley, G. R. et al. Increasing protein stability by altering long-range coulombic interactions. Protein Sci. 8, 1843–1849 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Robert, A., Barkoutsos, P. K., Woerner, S. & Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quantum Inf. 7, 38 (2021).

    Article  Google Scholar 

  27. Ettenhuber, P. et al. Calculating the energy profile of an enzymatic reaction on a quantum computer. J. Chem. Theory Comput. 21, 3493–3503 (2025).

    Article  PubMed  CAS  Google Scholar 

  28. Malone, F. D. et al. Towards the simulation of large scale protein–ligand interactions on NISQ-era quantum computers. Chem. Sci. 13, 3094–3108 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Aramyan, S., McGregor, K., Sandeep, S. & Haczku, A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by quantum approximate optimization algorithm (QAOA) based MaxCut with ZDOCK. Front. Immunol 13, 945317 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Pamidimukkala, J. V. et al. Protein structure prediction with high degrees of freedom in a gate-based quantum computer. J. Chem. Theory Comput. 20, 10223–10234 (2024).

    Article  PubMed  CAS  Google Scholar 

  31. Papalitsas, C. et al. Quantum approximate optimization algorithms for molecular docking. Preprint at https://doi.org/10.48550/arXiv.2503.04239 (2025).

  32. Chagneau, A., Massaoudi, Y., Derbali, I. & Yahiaoui, L. Quantum algorithm for bioinformatics to compute the similarity between proteins. IET Quantum Commun. 5, 417–442 (2024).

    Article  Google Scholar 

  33. Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Fox, D. M., Branson, K. M. & Walker, R. C. mRNA codon optimization with quantum computers. PLoS ONE 16, e0259101 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khatami, M. H., Mendes, U. C., Wiebe, N. & Kim, P. M. Gate-based quantum computing for protein design. PLoS Comput. Biol. 19, e1011033 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. Twenty-Eighth Annual ACM Symposium on Theory of Computing (ed. Miller, G. L.) 212–219 (Association for Computing Machinery, 1996); https://doi.org/10.1145/237814.237866

  37. Allcock, J. et al. The prospects of Monte Carlo antibody loop modelling on a fault-tolerant quantum computer. Front. Drug Discov 2, 908870 (2022).

    Article  Google Scholar 

  38. McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C. & Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 92, 015003 (2020).

    Article  CAS  Google Scholar 

  39. Ma, P., Chen, Y., Lu, H. & Zhong, W. Bisection Grover’s search algorithm and its application in analyzing CITE-seq data. J. Am. Stat. Assoc. 120, 52–63 (2024).

    Article  Google Scholar 

  40. Kundu, D. et al. Application of quantum tensor networks for protein classification. In Proc. Great Lakes Symposium on VLSI 2024 (eds Partin-Vaisband, I. et al.) 132–137 (Association for Computing Machinery, 2024); https://doi.org/10.1145/3649476.3658701

  41. Ghazi Vakili, M. et al. Quantum-computing-enhanced algorithm unveils potential KRAS inhibitors. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02526-3 (2025).

  42. Kouba, P. et al. Machine learning-guided protein engineering. ACS Catal. 13, 13863–13895 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jayakumar, A. et al. Quantum algorithm implementations for beginners. ACM Trans. Quantum Comput 3, 18:1–18:92 (2022).

    Google Scholar 

  44. Protein Engineering Portal (Loschmidt Laboratories); https://loschmidt.chemi.muni.cz/portal/

  45. Marques, S. M. et al. Caver Web 2.0: analysis of tunnels and ligand transport in dynamic ensembles of proteins. Nucl. Acids Res. 53, W132–W142 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hollingsworth, S. A. & Dror, R. O. Molecular dynamics simulation for all. Neuron 99, 1129–1143 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gerlt, J. A. et al. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta Proteins Proteom. 1854, 1019–1037 (2015).

    Article  CAS  Google Scholar 

  48. Hon, J. et al. EnzymeMiner: automated mining of soluble enzymes with diverse structures, catalytic properties and stabilities. Nucl. Acids Res. 48, W104–W109 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hon, J. et al. SoluProt: prediction of soluble protein expression in Escherichia coli. Bioinformatics 37, 23–28 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Planas-Iglesias, J. et al. AggreProt: a web server for predicting and engineering aggregation prone regions in proteins. Nucl. Acids Res. 52, W159–W169 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vasina, M. et al. Advanced database mining of efficient haloalkane dehalogenases by sequence and structure bioinformatics and microfluidics. Chem. Catal. 2, 2704–2725 (2022).

    CAS  Google Scholar 

  52. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).

    Article  PubMed  CAS  Google Scholar 

  54. Daley, A. J. et al. Practical quantum advantage in quantum simulation. Nature 607, 667–676 (2022).

    Article  PubMed  CAS  Google Scholar 

  55. Babbush, R. et al. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat. Commun. 14, 4058 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Musil, M. et al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief. Bioinform. 22, bbaa337 (2021).

    Article  PubMed  Google Scholar 

  57. Ross, C. M., Foley, G., Boden, M. & Gillam, E. M. J. in Enzyme Engineering: Methods and Protocols (eds Magnani, F. et al.) 85–110 (Springer, 2022); https://doi.org/10.1007/978-1-0716-1826-4_6

  58. Onodera, W., Hara, N., Aoki, S., Asahi, T. & Sawamura, N. Phylogenetic tree reconstruction via graph cut presented using a quantum-inspired computer. Mol. Phylogenet. Evol. 178, 107636 (2023).

    Article  PubMed  CAS  Google Scholar 

  59. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational hybrid quantum-classical algorithms. N. J. Phys. 18, 023023 (2016).

    Article  Google Scholar 

  61. Chovancova, E. et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Vavra, O. et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35, 4986–4993 (2019).

    Article  PubMed  CAS  Google Scholar 

  63. Horn, D. & Gottlieb, A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics. Phys. Rev. Lett. 88, 018702 (2001).

    Article  PubMed  Google Scholar 

  64. Ollitrault, P. J., Miessen, A. & Tavernelli, I. Molecular quantum dynamics: a quantum computing perspective. Acc. Chem. Res. 54, 4229–4238 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).

    Article  CAS  Google Scholar 

  67. Goings, J. J. et al. Reliably assessing the electronic structure of cytochrome P450 on today’s classical computers and tomorrow’s quantum computers. Proc. Natl Acad. Sci. USA 119, e2203533119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nguyen, T. D., Chen, Y.-I., Chen, L. H. & Yeh, H.-C. Recent advances in single-molecule tracking and imaging techniques. Annu. Rev. Anal. Chem. 16, 253–284 (2023).

    Article  CAS  Google Scholar 

  69. Vasina, M. et al. In-depth analysis of biocatalysts by microfluidics: an emerging source of data for machine learning. Biotechnol. Adv. 66, 108171 (2023).

    Article  PubMed  CAS  Google Scholar 

  70. Rapp, J. T., Bremer, B. J. & Romero, P. A. Self-driving laboratories to autonomously navigate the protein fitness landscape. Nat. Chem. Eng. 1, 97–107 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023).

    Article  Google Scholar 

  72. Lu, C. et al. The AI Scientist: towards fully automated open-ended scientific discovery. Preprint at https://doi.org/10.48550/arXiv.2408.06292 (2024).

  73. Google Quantum AI; https://quantumai.google/

  74. Quantum Roadmap; https://www.ibm.com/roadmaps/quantum/www.ibm.com/roadmaps/quantum

Download references

Acknowledgements

We express our sincere thanks to the Senior Editor of Nature Catalysis, J.-S. Völler and P. Zapletal from the University of Erlangen-Nuremberg for their constructive comments on the manuscript. We are also grateful for the computational resources provided by the e-INFRA CZ and ELIXIR-CZ projects (90254 and LM2023055), supported by the Ministry of Education, Youth and Sports of the Czech Republic, and by the National Institute for Neurology Research (LX22NPO5107), funded by the European Union—Next Generation EU. We also thank the RECETOX Research Infrastructure (No LM2023069) financed by the MEYS for a supportive background.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Mazurenko.

Ethics declarations

Competing interests

J.D. is the co-founder of the biotechnology spin-off company Enantis. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Sílvia Osuna and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damborsky, J., Kouba, P., Sivic, J. et al. Quantum computing for faster enzyme discovery and engineering. Nat Catal 8, 872–880 (2025). https://doi.org/10.1038/s41929-025-01410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01410-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing