Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Electrolyte effects in proton–electron transfer reactions and implications for renewable fuels and chemicals synthesis

Abstract

Electrolyte effects play a fundamental role in electrocatalysis, influencing reaction kinetics, selectivity and catalyst stability by altering interfacial interactions and charge distribution. Here we report recent advances to rationalize non-covalent interactions between electrolyte and surface adsorbates in electrocatalysis. Three main schools of thought have rationalized the effect of electrolyte–adsorbates–surface interactions on the reaction kinetics, each based on different descriptors. The first suggests that non-covalent interactions with the electrolyte modify the binding energies of the adsorbed intermediates. The second highlights the role of charge and electric fields near the electric double layer, shaped by the potential of zero charge, in stabilizing the polar adsorbates and governing proton transfer. The third focuses on energy barriers arising from the restructuring of the water solvation spheres of both electrolyte and reactants. We critically examine the main arguments and limitations of each framework, with a focus on hydrogen evolution and carbon dioxide reduction, and outline experimental challenges and future directions for elucidating electrolyte effects in electrocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of three schools of thought on electrolyte effects in the HER and CO2RR.
Fig. 2: School 1: Adsorbate binding energies govern reaction kinetics.
Fig. 3: School 2: Electrostatics stabilize polar adsorbates and control proton transfer.
Fig. 4: School 3: Water structure modulates the EDL and proton transfer.
Fig. 5: Characterization of the cation- and pH-dependent electrochemical double layer.

References

  1. Trasatti, S. Structuring of the solvent at metal/solution interfaces and components of the electrode potential. J. Electroanal. Chem. Interfacial Electrochem. 150, 1–15 (1983).

    Article  CAS  Google Scholar 

  2. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  3. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  4. García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).

    Article  PubMed  Google Scholar 

  5. Schott, C. M. et al. How to assess and predict electrical double layer properties. implications for electrocatalysis. Chem. Rev. 124, 12391–12462 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Escudero-Escribano, M. et al. Quantitative study of non-covalent interactions at the electrode–electrolyte interface using cyanide-modified Pt(111) electrodes. ChemPhysChem 12, 2230–2234 (2011).

    Article  PubMed  CAS  Google Scholar 

  7. Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. Rossmeisl, J., Chan, K., Skúlason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).

    Article  CAS  Google Scholar 

  9. Subbaraman, R., et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Marković, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring DiskPt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).

    Article  Google Scholar 

  11. Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).

    Article  CAS  Google Scholar 

  12. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Monteiro, M. C. O., Dattila, F., López, N. & Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).

    Article  PubMed  CAS  Google Scholar 

  14. Marcandalli, G., Monteiro, M. C. O., Goyal, A. & Koper, M. T. M. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55, 1900–1911 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Arán-Ais, R. M., Gao, D. & Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 51, 2906–2917 (2018).

    Article  PubMed  Google Scholar 

  16. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sarabia, F. J., Sebastián-Pascual, P., Koper, M. T. M., Climent, V. & Feliu, J. M. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl. Mater. Interfaces 11, 613–623 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).

    Article  CAS  Google Scholar 

  20. Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).

    Article  CAS  Google Scholar 

  22. Monteiro, M. C. O., et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).

    Article  CAS  Google Scholar 

  23. Dubouis, N. & Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 10, 9165–9181 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sebastián-Pascual, P., Shao-Horn, Y. & Escudero-Escribano, M. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Curr. Opin. Electrochem. 32, 100918 (2022).

    Article  Google Scholar 

  25. McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).

    Article  CAS  Google Scholar 

  26. Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

    Article  CAS  Google Scholar 

  27. Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  Google Scholar 

  28. Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).

    Article  CAS  Google Scholar 

  29. Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    Article  CAS  Google Scholar 

  30. Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. J. Electroanal. Chem. 524-525, 252–260 (2002).

    Article  CAS  Google Scholar 

  31. Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Pecina, O. & Schmickler, W. A model for electrochemical proton-transfer reactions. Chem. Phys. 228, 265–277 (1998).

    Article  CAS  Google Scholar 

  33. Garcia-Araez, N., Climent, V. & Feliu, J. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), As inferred from laser-pulsed experiments. electrostatic and chemical effects. J. Phys. Chem. C. 113, 9290–9304 (2009).

    Article  CAS  Google Scholar 

  34. Ringe, S., et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    Article  CAS  Google Scholar 

  35. Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).

    Article  CAS  Google Scholar 

  36. Tian, Y. et al. Effect of ion-specific water structures at metal surfaces on hydrogen production. Nat. Commun. 15, 7834 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  CAS  Google Scholar 

  38. Zeng, Y., Smith, R. B., Bai, P. & Bazant, M. Z. Simple formula for Marcus–Hush–Chidsey kinetics. J. Electroanal. Chem. 735, 77–83 (2014).

    Article  CAS  Google Scholar 

  39. Wang, T. et al. Confined water for catalysis: thermodynamic properties and reaction kinetics. Chem. Rev. 125, 1420–1467 (2025).

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Z.-M., et al. Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media. Nat. Catal. 7, 807–817 (2024).

    Article  CAS  Google Scholar 

  41. Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).

    Article  CAS  Google Scholar 

  42. Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gomez, R., Fernandez-Vega, A., Feliu, J. M. & Aldaz, A. Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). J. Phys. Chem. 97, 4769–4776 (1993).

    Article  CAS  Google Scholar 

  44. Stoffelsma, C. et al. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations. J. Am. Chem. Soc. 132, 16127–16133 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. Feliu, J. M. & Herrero, E. Pt single crystal surfaces in electrochemistry and electrocatalysis. EES Catal. 2, 399–410 (2024).

    Article  CAS  Google Scholar 

  46. Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the Cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).

    Article  CAS  Google Scholar 

  47. Xue, S. et al. Enhancing the hydrogen evolution reaction activity of platinum electrodes in alkaline media using nickel–iron clusters. Angew. Chem. Int. Ed. 59, 10934–10938 (2020).

    Article  CAS  Google Scholar 

  48. Goyal, A., Louisia, S., Moerland, P. & Koper, M. T. M. Cooperative effect of cations and catalyst structure in tuning alkaline hydrogen evolution on Pt electrodes. J. Am. Chem. Soc. 146, 7305–7312 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017).

    Article  PubMed  CAS  Google Scholar 

  50. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  51. Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).

    Article  Google Scholar 

  53. Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Trasatti, S. & Lust, E. in Modern Aspects of Electrochemistry (eds White, R. E. et al.) 1–215 (Springer, 1999).

  55. Roth, J. D. & Weaver, M. J. Role of double-layer cation on the potential-dependent stretching frequencies and binding geometries of carbon monoxide at platinum-nonaqueous interfaces. Langmuir 8, 1451–1458 (1992).

    Article  CAS  Google Scholar 

  56. Ganassin, A., Colic, V., Tymoczko, J., Bandarenka, A. S. & Schuhmann, W. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media. Phys. Chem. Chem. Phys. 17, 8349–8355 (2015).

    Article  PubMed  CAS  Google Scholar 

  57. Briega-Martos, V., Sarabia, F. J., Climent, V., Herrero, E. & Feliu, J. M. Cation effects on interfacial water structure and hydrogen peroxide reduction on Pt(111). ACS Meas. Sci. Au 1, 48–55 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Auer, A., Ding, X., Bandarenka, A. S. & Kunze-Liebhäuser, J. The potential of zero charge and the electrochemical interface structure of Cu(111) in alkaline solutions. J. Phys. Chem. C. 125, 5020–5028 (2021).

    Article  CAS  Google Scholar 

  59. Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).

    Article  CAS  Google Scholar 

  60. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  61. Sebastián-Pascual, P., Sarabia, F. J., Climent, V., Feliu, J. M. & Escudero-Escribano, M. Elucidating the structure of the Cu-alkaline electrochemical interface with the laser-induced temperature jump method. J. Phys. Chem. C. 124, 23253–23259 (2020).

    Article  Google Scholar 

  62. Zhu, Q., Wallentine, S. K., Deng, G.-H., Rebstock, J. A. & Baker, L. R. The solvation-induced Onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au 2, 472–482 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Rebstock, J. A., Zhu, Q. & Baker, L. R. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO2 reduction kinetics. Chem. Sci. 13, 7634–7643 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Dubouis, N. et al. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3, 656–663 (2020).

    Article  CAS  Google Scholar 

  65. Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Yoo, J. M., Ingenmey, J., Salanne, M. & Lukatskaya, M. R. Anion effect in electrochemical CO2 reduction: from spectators to orchestrators. J. Am. Chem. Soc. 146, 31768–31777 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  CAS  Google Scholar 

  68. Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

  70. Monteiro, M. C. O., Liu, X., Hagedoorn, B. J. L., Snabilié, D. D. & Koper, M. T. M. Interfacial pH measurements using a rotating ring-disc electrode with a voltammetric pH sensor. ChemElectroChem 9, e202101223 (2022).

    Article  CAS  Google Scholar 

  71. Yang, Y.-F. & Denuault, G. Scanning electrochemical microscopy (SECM) study of pH changes at Pt electrode surfaces in Na2SO4 solution (pH 4) under potential cycling conditions. J. Chem. Soc. Faraday Trans. 92, 3791–3798 (1996).

    Article  CAS  Google Scholar 

  72. Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wang, Y.-Q. et al. Alkali metal cations induce structural evolution on Au(111) during cathodic polarization. J. Am. Chem. Soc. 146, 27713–27724 (2024).

    Article  PubMed  CAS  Google Scholar 

  74. Behjati, S. & Koper, M. T. M. In situ STM study of roughening of Au(111) single-crystal electrode in sulfuric acid solution during oxidation–reduction cycles. J. Phys. Chem. C. 128, 19024–19034 (2024).

    Article  CAS  Google Scholar 

  75. Amirbeigiarab, R., et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6, 837–846 (2023).

    Article  CAS  Google Scholar 

  76. Magnussen, O. M. et al. In situ and operando X-ray scattering methods in electrochemistry and electrocatalysis. Chem. Rev. 124, 629–721 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Harlow, G. S., Lundgren, E. & Escudero-Escribano, M. Recent advances in surface X-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Curr. Opin. Electrochem. 23, 162–173 (2020).

    Article  CAS  Google Scholar 

  78. Tanaka, S., Tajiri, H., Sakata, O., Hoshi, N. & Nakamura, M. Interfacial structure of Pt(110) electrode during hydrogen evolution reaction in alkaline solutions. J. Phys. Chem. Lett. 13, 8403–8408 (2022).

    Article  PubMed  CAS  Google Scholar 

  79. Garcia-Araez, N., Rodriguez, P., Navarro, V., Bakker, H. J. & Koper, M. T. M. Structural effects on water adsorption on gold electrodes. J. Phys. Chem. C 115, 21249–21257 (2011).

    Article  CAS  Google Scholar 

  80. Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  PubMed  CAS  Google Scholar 

  81. Herzog, A., et al. Operando raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction. Nat. Commun. 15, 3986 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang, H.-L., You, E.-M., Panneerselvam, R., Ding, S.-Y. & Tian, Z.-Q. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light. Sci. Appl. 10, 161 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lee, S. Y., et al. Probing cation effects on *CO intermediates from electroreduction of CO2 through operando raman spectroscopy. J. Am. Chem. Soc. 145, 23068–23075 (2023).

    Article  PubMed  CAS  Google Scholar 

  84. Zhang, H., Raciti, D. & Hall, A. S. Disordered interfacial H2O promotes electrochemical C–C coupling. Nat. Chem. 17, 1161–1168 (2025).

    Article  PubMed  CAS  Google Scholar 

  85. DeWalt-Kerian, E. L. et al. pH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer. J. Phys. Chem. Lett. 8, 2855–2861 (2017).

    Article  PubMed  CAS  Google Scholar 

  86. Li, J., et al. Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block. Nat. Synth. 3, 809–824 (2024).

    Article  CAS  Google Scholar 

  87. Costa, G. F. & Escudero-Escribano, M. Electrode–electrolyte engineering and in situ spectroscopy for urea electrosynthesis from carbon dioxide and nitrate Co-reduction. JACS Au 5, 1538–1548 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Li, J. & Kornienko, N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. 13, 3957–3964 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Tu, X. et al. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew. Chem. Int. Ed. 63, e202317087 (2024).

    Article  CAS  Google Scholar 

  90. McGregor, J.-M., et al. Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields. Nat. Catal. 8, 79–91 (2025).

    Article  CAS  Google Scholar 

  91. Brosch, S., et al. Visualization of CO formation at the triple-phase boundary in gas diffusion electrodes for ecCO2RR. Chem https://doi.org/10.1016/j.chempr.2025.102582 (2025).

Download references

Acknowledgements

We acknowledge support from the Bill & Melinda Gates Foundation through award INV-064006 (‘Developing efficient carbon and nitrogen feedstocks for GRAS microbes’). Research at MIT was supported by the US Department of Energy, Basic Energy Sciences (DOE-BES), through the Energy Frontier Research Center DE-SC0023415 (Center for Electrochemical Dynamics and Reactions on Surfaces). Additional support was provided by the MIT Climate Grand Challenge—Center for Electrification and Decarbonization of Industry (MIT-CEDI), Thrust 4—Ammonia. M.E.E. acknowledges the Pioneer Center for Accelerating P2X Materials Discovery (CAPeX), DNRF grant no. P3. ICN2 is supported by the Severo Ochoa Centres of Excellence Programme from the Spanish MCIN/AEI (grant no. CEX2021-001214-S) and funded by the CERCA Programme/Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Contributions

P.S.-P. and A.H. led the majority of this work. P.S.-P. was responsible for conceptualization, data curation, methodology, validation and drafting the initial manuscript. A.H. contributed to conceptualization, data curation, analysis, investigation, methodology, project administration, validation, visualization, supervision and writing. Y.Z. contributed to conceptualization and the initial draft. Y.S.-H. and M.E.-E. supervised conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision, validation and writing. All authors participated in proofreading the manuscript.

Corresponding authors

Correspondence to Antonia Herzog, Yang Shao-Horn or María Escudero-Escribano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Dunfeng Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastián-Pascual, P., Herzog, A., Zhang, Y. et al. Electrolyte effects in proton–electron transfer reactions and implications for renewable fuels and chemicals synthesis. Nat Catal 8, 986–999 (2025). https://doi.org/10.1038/s41929-025-01421-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01421-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing