Abstract
Electrolyte effects play a fundamental role in electrocatalysis, influencing reaction kinetics, selectivity and catalyst stability by altering interfacial interactions and charge distribution. Here we report recent advances to rationalize non-covalent interactions between electrolyte and surface adsorbates in electrocatalysis. Three main schools of thought have rationalized the effect of electrolyte–adsorbates–surface interactions on the reaction kinetics, each based on different descriptors. The first suggests that non-covalent interactions with the electrolyte modify the binding energies of the adsorbed intermediates. The second highlights the role of charge and electric fields near the electric double layer, shaped by the potential of zero charge, in stabilizing the polar adsorbates and governing proton transfer. The third focuses on energy barriers arising from the restructuring of the water solvation spheres of both electrolyte and reactants. We critically examine the main arguments and limitations of each framework, with a focus on hydrogen evolution and carbon dioxide reduction, and outline experimental challenges and future directions for elucidating electrolyte effects in electrocatalysis.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





References
Trasatti, S. Structuring of the solvent at metal/solution interfaces and components of the electrode potential. J. Electroanal. Chem. Interfacial Electrochem. 150, 1–15 (1983).
Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).
Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).
García-Aráez, N., Climent, V. & Feliu, J. M. Evidence of water reorientation on model electrocatalytic surfaces from nanosecond-laser-pulsed experiments. J. Am. Chem. Soc. 130, 3824–3833 (2008).
Schott, C. M. et al. How to assess and predict electrical double layer properties. implications for electrocatalysis. Chem. Rev. 124, 12391–12462 (2024).
Escudero-Escribano, M. et al. Quantitative study of non-covalent interactions at the electrode–electrolyte interface using cyanide-modified Pt(111) electrodes. ChemPhysChem 12, 2230–2234 (2011).
Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).
Rossmeisl, J., Chan, K., Skúlason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).
Subbaraman, R., et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science 334, 1256–1260 (2011).
Marković, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring DiskPt(hkl) studies. J. Phys. Chem. 100, 6715–6721 (1996).
Koper, M. T. M. Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710–2723 (2013).
Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).
Monteiro, M. C. O., Dattila, F., López, N. & Koper, M. T. M. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J. Am. Chem. Soc. 144, 1589–1602 (2022).
Marcandalli, G., Monteiro, M. C. O., Goyal, A. & Koper, M. T. M. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 55, 1900–1911 (2022).
Arán-Ais, R. M., Gao, D. & Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 51, 2906–2917 (2018).
Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).
Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).
Sarabia, F. J., Sebastián-Pascual, P., Koper, M. T. M., Climent, V. & Feliu, J. M. Effect of the interfacial water structure on the hydrogen evolution reaction on Pt(111) modified with different nickel hydroxide coverages in alkaline media. ACS Appl. Mater. Interfaces 11, 613–623 (2019).
Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C 125, 4397–4411 (2021).
Singh, M. R., Kwon, Y., Lum, Y., Ager, J. W. & Bell, A. T. Hydrolysis of electrolyte cations enhances the electrochemical reduction of CO2 over Ag and Cu. J. Am. Chem. Soc. 138, 13006–13012 (2016).
Murata, A. & Hori, Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu electrode. Bull. Chem. Soc. Jpn 64, 123–127 (1991).
Monteiro, M. C. O., et al. Absence of CO2 electroreduction on copper, gold and silver electrodes without metal cations in solution. Nat. Catal. 4, 654–662 (2021).
Dubouis, N. & Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 10, 9165–9181 (2019).
Sebastián-Pascual, P., Shao-Horn, Y. & Escudero-Escribano, M. Toward understanding the role of the electric double layer structure and electrolyte effects on well-defined interfaces for electrocatalysis. Curr. Opin. Electrochem. 32, 100918 (2022).
McCrum, I. T. & Koper, M. T. M. The role of adsorbed hydroxide in hydrogen evolution reaction kinetics on modified platinum. Nat. Energy 5, 891–899 (2020).
Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).
Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).
Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 54, 1053–1063 (1958).
Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).
Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. J. Electroanal. Chem. 524-525, 252–260 (2002).
Sheng, W. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 5848 (2015).
Pecina, O. & Schmickler, W. A model for electrochemical proton-transfer reactions. Chem. Phys. 228, 265–277 (1998).
Garcia-Araez, N., Climent, V. & Feliu, J. Potential-dependent water orientation on Pt(111), Pt(100), and Pt(110), As inferred from laser-pulsed experiments. electrostatic and chemical effects. J. Phys. Chem. C. 113, 9290–9304 (2009).
Ringe, S., et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).
Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).
Tian, Y. et al. Effect of ion-specific water structures at metal surfaces on hydrogen production. Nat. Commun. 15, 7834 (2024).
Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).
Zeng, Y., Smith, R. B., Bai, P. & Bazant, M. Z. Simple formula for Marcus–Hush–Chidsey kinetics. J. Electroanal. Chem. 735, 77–83 (2014).
Wang, T. et al. Confined water for catalysis: thermodynamic properties and reaction kinetics. Chem. Rev. 125, 1420–1467 (2025).
Zhang, Z.-M., et al. Probing electrolyte effects on cation-enhanced CO2 reduction on copper in acidic media. Nat. Catal. 7, 807–817 (2024).
Nilsson, A. et al. The electronic structure effect in heterogeneous catalysis. Catal. Lett. 100, 111–114 (2005).
Zheng, J., Sheng, W., Zhuang, Z., Xu, B. & Yan, Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602 (2016).
Gomez, R., Fernandez-Vega, A., Feliu, J. M. & Aldaz, A. Hydrogen evolution on platinum single crystal surfaces: effects of irreversibly adsorbed bismuth and antimony on hydrogen adsorption and evolution on platinum (100). J. Phys. Chem. 97, 4769–4776 (1993).
Stoffelsma, C. et al. Promotion of the oxidation of carbon monoxide at stepped platinum single-crystal electrodes in alkaline media by lithium and beryllium cations. J. Am. Chem. Soc. 132, 16127–16133 (2010).
Feliu, J. M. & Herrero, E. Pt single crystal surfaces in electrochemistry and electrocatalysis. EES Catal. 2, 399–410 (2024).
Chen, X., McCrum, I. T., Schwarz, K. A., Janik, M. J. & Koper, M. T. M. Co-adsorption of cations as the Cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode. Angew. Chem. Int. Ed. 56, 15025–15029 (2017).
Xue, S. et al. Enhancing the hydrogen evolution reaction activity of platinum electrodes in alkaline media using nickel–iron clusters. Angew. Chem. Int. Ed. 59, 10934–10938 (2020).
Goyal, A., Louisia, S., Moerland, P. & Koper, M. T. M. Cooperative effect of cations and catalyst structure in tuning alkaline hydrogen evolution on Pt electrodes. J. Am. Chem. Soc. 146, 7305–7312 (2024).
Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. ChemPhysChem 18, 3266–3273 (2017).
Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).
Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).
Pérez-Gallent, E., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu(100) electrodes. Angew. Chem. Int. Ed. 56, 3621–3624 (2017).
Pérez-Gallent, E., Marcandalli, G., Figueiredo, M. C., Calle-Vallejo, F. & Koper, M. T. M. Structure- and potential-dependent cation effects on CO reduction at copper single-crystal electrodes. J. Am. Chem. Soc. 139, 16412–16419 (2017).
Trasatti, S. & Lust, E. in Modern Aspects of Electrochemistry (eds White, R. E. et al.) 1–215 (Springer, 1999).
Roth, J. D. & Weaver, M. J. Role of double-layer cation on the potential-dependent stretching frequencies and binding geometries of carbon monoxide at platinum-nonaqueous interfaces. Langmuir 8, 1451–1458 (1992).
Ganassin, A., Colic, V., Tymoczko, J., Bandarenka, A. S. & Schuhmann, W. Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media. Phys. Chem. Chem. Phys. 17, 8349–8355 (2015).
Briega-Martos, V., Sarabia, F. J., Climent, V., Herrero, E. & Feliu, J. M. Cation effects on interfacial water structure and hydrogen peroxide reduction on Pt(111). ACS Meas. Sci. Au 1, 48–55 (2021).
Auer, A., Ding, X., Bandarenka, A. S. & Kunze-Liebhäuser, J. The potential of zero charge and the electrochemical interface structure of Cu(111) in alkaline solutions. J. Phys. Chem. C. 125, 5020–5028 (2021).
Ojha, K., Arulmozhi, N., Aranzales, D. & Koper, M. T. M. Double layer at the Pt(111)–aqueous electrolyte interface: potential of zero charge and anomalous Gouy–Chapman screening. Angew. Chem. Int. Ed. 59, 711–715 (2020).
Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).
Sebastián-Pascual, P., Sarabia, F. J., Climent, V., Feliu, J. M. & Escudero-Escribano, M. Elucidating the structure of the Cu-alkaline electrochemical interface with the laser-induced temperature jump method. J. Phys. Chem. C. 124, 23253–23259 (2020).
Zhu, Q., Wallentine, S. K., Deng, G.-H., Rebstock, J. A. & Baker, L. R. The solvation-induced Onsager reaction field rather than the double-layer field controls CO2 reduction on gold. JACS Au 2, 472–482 (2022).
Rebstock, J. A., Zhu, Q. & Baker, L. R. Comparing interfacial cation hydration at catalytic active sites and spectator sites on gold electrodes: understanding structure sensitive CO2 reduction kinetics. Chem. Sci. 13, 7634–7643 (2022).
Dubouis, N. et al. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix. Nat. Catal. 3, 656–663 (2020).
Monteiro, M. C. O., Goyal, A., Moerland, P. & Koper, M. T. M. Understanding cation trends for hydrogen evolution on platinum and gold electrodes in alkaline media. ACS Catal. 11, 14328–14335 (2021).
Yoo, J. M., Ingenmey, J., Salanne, M. & Lukatskaya, M. R. Anion effect in electrochemical CO2 reduction: from spectators to orchestrators. J. Am. Chem. Soc. 146, 31768–31777 (2024).
Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).
Li, J., Li, X., Gunathunge, C. M. & Waegele, M. M. Hydrogen bonding steers the product selectivity of electrocatalytic CO reduction. Proc. Natl Acad. Sci. USA 116, 9220–9229 (2019).
Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).
Monteiro, M. C. O., Liu, X., Hagedoorn, B. J. L., Snabilié, D. D. & Koper, M. T. M. Interfacial pH measurements using a rotating ring-disc electrode with a voltammetric pH sensor. ChemElectroChem 9, e202101223 (2022).
Yang, Y.-F. & Denuault, G. Scanning electrochemical microscopy (SECM) study of pH changes at Pt electrode surfaces in Na2SO4 solution (pH 4) under potential cycling conditions. J. Chem. Soc. Faraday Trans. 92, 3791–3798 (1996).
Monteiro, M. C. O., Jacobse, L. & Koper, M. T. M. Understanding the voltammetry of bulk CO electrooxidation in neutral media through combined SECM measurements. J. Phys. Chem. Lett. 11, 9708–9713 (2020).
Wang, Y.-Q. et al. Alkali metal cations induce structural evolution on Au(111) during cathodic polarization. J. Am. Chem. Soc. 146, 27713–27724 (2024).
Behjati, S. & Koper, M. T. M. In situ STM study of roughening of Au(111) single-crystal electrode in sulfuric acid solution during oxidation–reduction cycles. J. Phys. Chem. C. 128, 19024–19034 (2024).
Amirbeigiarab, R., et al. Atomic-scale surface restructuring of copper electrodes under CO2 electroreduction conditions. Nat. Catal. 6, 837–846 (2023).
Magnussen, O. M. et al. In situ and operando X-ray scattering methods in electrochemistry and electrocatalysis. Chem. Rev. 124, 629–721 (2024).
Harlow, G. S., Lundgren, E. & Escudero-Escribano, M. Recent advances in surface X-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Curr. Opin. Electrochem. 23, 162–173 (2020).
Tanaka, S., Tajiri, H., Sakata, O., Hoshi, N. & Nakamura, M. Interfacial structure of Pt(110) electrode during hydrogen evolution reaction in alkaline solutions. J. Phys. Chem. Lett. 13, 8403–8408 (2022).
Garcia-Araez, N., Rodriguez, P., Navarro, V., Bakker, H. J. & Koper, M. T. M. Structural effects on water adsorption on gold electrodes. J. Phys. Chem. C 115, 21249–21257 (2011).
Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).
Herzog, A., et al. Operando raman spectroscopy uncovers hydroxide and CO species enhance ethanol selectivity during pulsed CO2 electroreduction. Nat. Commun. 15, 3986 (2024).
Wang, H.-L., You, E.-M., Panneerselvam, R., Ding, S.-Y. & Tian, Z.-Q. Advances of surface-enhanced Raman and IR spectroscopies: from nano/microstructures to macro-optical design. Light. Sci. Appl. 10, 161 (2021).
Lee, S. Y., et al. Probing cation effects on *CO intermediates from electroreduction of CO2 through operando raman spectroscopy. J. Am. Chem. Soc. 145, 23068–23075 (2023).
Zhang, H., Raciti, D. & Hall, A. S. Disordered interfacial H2O promotes electrochemical C–C coupling. Nat. Chem. 17, 1161–1168 (2025).
DeWalt-Kerian, E. L. et al. pH-Dependent Inversion of Hofmeister Trends in the Water Structure of the Electrical Double Layer. J. Phys. Chem. Lett. 8, 2855–2861 (2017).
Li, J., et al. Heterogeneous electrosynthesis of C–N, C–S and C–P products using CO2 as a building block. Nat. Synth. 3, 809–824 (2024).
Costa, G. F. & Escudero-Escribano, M. Electrode–electrolyte engineering and in situ spectroscopy for urea electrosynthesis from carbon dioxide and nitrate Co-reduction. JACS Au 5, 1538–1548 (2025).
Li, J. & Kornienko, N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. 13, 3957–3964 (2022).
Tu, X. et al. A universal approach for sustainable urea synthesis via intermediate assembly at the electrode/electrolyte interface. Angew. Chem. Int. Ed. 63, e202317087 (2024).
McGregor, J.-M., et al. Organic electrolyte cations promote non-aqueous CO2 reduction by mediating interfacial electric fields. Nat. Catal. 8, 79–91 (2025).
Brosch, S., et al. Visualization of CO formation at the triple-phase boundary in gas diffusion electrodes for ecCO2RR. Chem https://doi.org/10.1016/j.chempr.2025.102582 (2025).
Acknowledgements
We acknowledge support from the Bill & Melinda Gates Foundation through award INV-064006 (‘Developing efficient carbon and nitrogen feedstocks for GRAS microbes’). Research at MIT was supported by the US Department of Energy, Basic Energy Sciences (DOE-BES), through the Energy Frontier Research Center DE-SC0023415 (Center for Electrochemical Dynamics and Reactions on Surfaces). Additional support was provided by the MIT Climate Grand Challenge—Center for Electrification and Decarbonization of Industry (MIT-CEDI), Thrust 4—Ammonia. M.E.E. acknowledges the Pioneer Center for Accelerating P2X Materials Discovery (CAPeX), DNRF grant no. P3. ICN2 is supported by the Severo Ochoa Centres of Excellence Programme from the Spanish MCIN/AEI (grant no. CEX2021-001214-S) and funded by the CERCA Programme/Generalitat de Catalunya.
Author information
Authors and Affiliations
Contributions
P.S.-P. and A.H. led the majority of this work. P.S.-P. was responsible for conceptualization, data curation, methodology, validation and drafting the initial manuscript. A.H. contributed to conceptualization, data curation, analysis, investigation, methodology, project administration, validation, visualization, supervision and writing. Y.Z. contributed to conceptualization and the initial draft. Y.S.-H. and M.E.-E. supervised conceptualization, funding acquisition, investigation, methodology, project administration, resources, supervision, validation and writing. All authors participated in proofreading the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Catalysis thanks Dunfeng Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sebastián-Pascual, P., Herzog, A., Zhang, Y. et al. Electrolyte effects in proton–electron transfer reactions and implications for renewable fuels and chemicals synthesis. Nat Catal 8, 986–999 (2025). https://doi.org/10.1038/s41929-025-01421-7
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41929-025-01421-7