Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The overlooked role of adsorption isotherms in electrocatalysis

Electrocatalysts enable the efficient interconversion of electrical and chemical energy for the sustainable production of fuels and chemicals. Here we highlight the importance of developing electrochemical adsorption isotherms to demystify complex reaction mechanisms and rationalize catalytic activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermodynamic parameters influencing surface coverage during electrocatalysis.
Fig. 2: Characteristics of a surface-catalysed reaction operating within the Langmuirian limit.
Fig. 3: Examples of non-idealities that can result in complex isotherm profiles.
Fig. 4: Knowledge gaps towards developing electrochemical adsorption isotherm models.

References

  1. Eliaz, N. & Gileadi, E. Physical Electrochemistry: Fundamentals, Techniques, and Applications (Wiley, 2019).

  2. Chorkendorff, I. & Niemantsverdriet, J. W. Concepts of Modern Catalysis and Kinetics (Wiley, 2017).

  3. Jung, O., Jackson, M. N., Bisbey, R. P., Kogan, N. E. & Surendranath, Y. Joule 6, 476–493 (2022).

    Article  CAS  Google Scholar 

  4. Lucky, C. & Schreier, M. ACS Nano 18, 6008–6015 (2024).

    Article  CAS  PubMed  Google Scholar 

  5. Gileadi, E. Electrochim. Acta 32, 221–229 (1987).

    Article  CAS  Google Scholar 

  6. Wesley, T. S., Román-Leshkov, Y. & Surendranath, Y. ACS Cent. Sci. 7, 1045–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moss, B. et al. J. Am. Chem. Soc. 146, 8915–8927 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuo, D.-Y. et al. J. Am. Chem. Soc. 140, 17597–17605 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Liang, C. et al. Nat. Catal. 7, 763–775 (2024).

    Article  CAS  Google Scholar 

  10. Mayer, J. M. J. Am. Chem. Soc. 145, 7050–7064 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim, C. et al. ACS Catal. 14, 3128–3138 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhan, C. et al. ACS Catal. 11, 7694–7701 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang, X., Xiong, H., Lu, Q. & Xu, B. JACS Au. 3, 2948–2963 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayer, J. M. J. Catal. 439, 115725 (2024).

    Article  CAS  Google Scholar 

  15. Shannon, S. L. & Goodwin, J. G. Jr Chem. Rev. 95, 677–695 (1995).

    Article  CAS  Google Scholar 

  16. Snitkoff-Sol, R. Z., Bond, A. M. & Elbaz, L. ACS Catal. 14, 7576–7588 (2024).

    Article  CAS  Google Scholar 

  17. Kastlunger, G. et al. ACS Catal. 12, 4344–4357 (2022).

    Article  CAS  Google Scholar 

  18. Gao, G. & Wang, L.-W. Chem. Catal. 1, 1331–1345 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the United States Department of Energy by Lawrence Livermore National Laboratory (LLNL) under contract DE-AC52-07NA27344. N.G. acknowledges support from a startup grant at NTU (award number 024462-00001). C.H. acknowledges support as part of the Center for Closing the Carbon Cycle, an Energy Frontier Research Center funded by the United States Department of Energy, Office of Science, Basic Energy Sciences under award number DE-SC0023427. Y.S. acknowledges the United States Department of Energy, Basic Energy Sciences award number DE-SC0020973. The authors thank J. Cataldo from Lawrence Livermore National Laboratory’s Program Development Support Office for assistance with graphic design. The authors also thank N. Razdan for his comments on the manuscript. Manuscript released as LLNL-JRNL-2003233.

Author information

Authors and Affiliations

Authors

Contributions

N.G. and A.T.C. contributed equally to this work. N.G., A.T.C. and Y.S. conceived the idea and wrote the manuscript with input from C.H.

Corresponding authors

Correspondence to Nitish Govindarajan or Yogesh Surendranath.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jason Bates and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, N., Chu, A.T., Hahn, C. et al. The overlooked role of adsorption isotherms in electrocatalysis. Nat Catal 8, 1254–1259 (2025). https://doi.org/10.1038/s41929-025-01461-z

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41929-025-01461-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing