Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Roadmap for transforming heterogeneous catalysis with artificial intelligence

Abstract

Artificial intelligence (AI) is poised to transform heterogeneous catalysis, opening avenues for catalytic materials discovery. By uncovering intricate patterns in high-dimensional data, AI has been reshaping our pursuit of sustainable catalytic processes across the energy, environmental and chemical sectors. This promise, however, hinges on overcoming fundamental barriers, including limitations in data availability and quality, challenges in the generalizability and interpretability of data-augmented decisions, and the persistent gap between in silico predictions and experiments. Here we outline a forward-looking roadmap for deeply integrating AI into heterogeneous catalysis with an AI-ready data ecosystem, multimodal foundation models, and ultimately autonomous laboratories to accelerate the development of next-generation catalytic technologies via AI-empowered human–machine collaboration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Roadmap for integrating AI into heterogeneous catalysis.
Fig. 2: Building an AI-ready data ecosystem for heterogeneous catalysis.
Fig. 3: ML strategies underpinning multimodal foundation models for heterogeneous catalysis.
Fig. 4: Core pillars of autonomous laboratories in heterogeneous catalysis.

References

  1. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014); https://doi.org/10.1002/9781118892114

  2. Mou, T. et al. Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat. Catal. 6, 122–136 (2023).

    Article  Google Scholar 

  3. Margraf, J. T., Jung, H., Scheurer, C. & Reuter, K. Exploring catalytic reaction networks with machine learning. Nat. Catal 6, 112–121 (2023).

    Article  Google Scholar 

  4. Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article  Google Scholar 

  5. Scheurer, C. & Reuter, K. Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis. Nat. Catal. 8, 13–19 (2025).

    Article  CAS  Google Scholar 

  6. García-Muelas, R. & López, N. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, S.-H., Pillai, H. S., Wang, S., Achenie, L. E. K. & Xin, H. Infusing theory into deep learning for interpretable reactivity prediction. Nat. Commun. 12, 5288 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lian, Z., Dattila, F. & López, N. Stability and lifetime of diffusion-trapped oxygen in oxide-derived copper CO2 reduction electrocatalysts. Nat. Catal. 7, 401–411 (2024).

    Article  CAS  Google Scholar 

  9. Chen, D. Square-pyramidal subsurface oxygen [Ag4OAg] drives selective ethene epoxidation on silver. Nat. Catal. 7, 536–545 (2024).

    Article  CAS  Google Scholar 

  10. Suvarna, M., Vaucher, A. C., Mitchell, S., Laino, T. & Pérez-Ramírez, J. Language models and protocol standardization guidelines for accelerating synthesis planning in heterogeneous catalysis. Nat. Commun. 14, 7964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Orouji, N. et al. Autonomous catalysis research with human–AI–robot collaboration. Nat. Catal. 8, 1135–1145 (2025).

    Article  Google Scholar 

  13. Wulf, C. et al. A unified research data infrastructure for catalysis research—challenges and concepts. ChemCatChem 13, 3223–3236 (2021).

    Article  CAS  Google Scholar 

  14. Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. Toniato, A., Vaucher, A. C., Laino, T. & Graziani, M. Negative chemical data boosts language models in reaction outcome prediction. Sci. Adv. 11, eadt5578 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behr, A. S. et al. Generating knowledge graphs through text mining of catalysis research related literature. Catal. Sci. Technol. 14, 5699–5713 (2024).

    Article  CAS  Google Scholar 

  17. Díaz, R. & Xin, H. Knowledge graphs in heterogeneous catalysis: recent advances and future opportunities. Chin. J. Chem. Eng. 84, 179–189 (2025).

    Article  Google Scholar 

  18. Behr, A. S., Borgelt, H. & Kockmann, N. Ontologies4Cat: Investigating the landscape of ontologies for catalysis research data management. J. Cheminform. 16, 16 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Trunschke, A. Prospects and challenges for autonomous catalyst discovery viewed from an experimental perspective. Catal. Sci. Technol. 12, 3650–3669 (2022).

    Article  CAS  Google Scholar 

  20. Krenn, M. et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 4, 761–769 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Lam, E. et al. General data management workflow to process tabular data in automated and high-throughput heterogeneous catalysis research. Digit. Discov. 4, 539–547 (2025).

    Article  Google Scholar 

  23. Higgins, S. G., Nogiwa-Valdez, A. A. & Stevens, M. M. Considerations for implementing electronic laboratory notebooks in an academic research environment. Nat. Protoc. 17, 179–189 (2022).

    Article  CAS  PubMed  Google Scholar 

  24. Tremouilhac, P. et al. Chemotion ELN: an open source electronic lab notebook for chemists in academia. J. Cheminform. 9, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Lin, C.-L. et al. Addressing standardization and semantics in an electronic lab notebook for multidisciplinary use: LabIMotion. J. Cheminform. 17, 75 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gossler, H. et al. A new approach to research data management with a focus on traceability: Adacta. Chem. Ing. Tech. 94, 1798–1807 (2022).

    Article  CAS  Google Scholar 

  27. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  PubMed  Google Scholar 

  28. Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  29. Jain, A. et al. Commentary: The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  30. Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Steinmann, S. N., Hermawan, A., Bin Jassar, M. & Seh, Z. W. Autonomous high-throughput computations in catalysis. Chem Catal. 2, 940–956 (2022).

    CAS  Google Scholar 

  32. Kulik, H. J. Using experimental data in computationally guided rational design of inorganic materials with machine learning. J. Mater. Res. 40, 833–848 (2025).

    Article  CAS  Google Scholar 

  33. Zhang, L. et al. Artificial intelligence for catalyst design and synthesis. Matter 8, 102138 (2025).

    Article  CAS  Google Scholar 

  34. Burte, A. S. et al. CatTestHub: a benchmarking database of experimental heterogeneous catalysis for evaluating advanced materials. J. Catal. 442, 115902 (2025).

    Article  CAS  Google Scholar 

  35. Winther, K. T. et al. Catalysis-Hub.org, an open electronic structure database for surface reactions. Sci. Data 6, 75 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysts. ACS Catal. 13, 3066–3084 (2023).

    Article  CAS  Google Scholar 

  37. Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

    Article  CAS  Google Scholar 

  38. Barroso-Luque, L. et al. Open Materials 2024 (OMat24) inorganic materials dataset and models. Preprint at http://arxiv.org/abs/2410.12771 (2024).

  39. Wood, B. M. et al. UMA: a family of universal models for atoms. Preprint at http://arxiv.org/abs/2506.23971 (2025).

  40. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Article  PubMed  Google Scholar 

  41. Scheidgen, M. et al. NOMAD: a distributed web-based platform for managing materials science research data. J. Open Source Softw. 8, 5388 (2023).

    Article  Google Scholar 

  42. Bo, C., Maseras, F. & López, N. The role of computational results databases in accelerating the discovery of catalysts. Nat. Catal. 1, 809–810 (2018).

    Article  Google Scholar 

  43. Zhang, D. & Li, H. Digital Catalysis Platform (DigCat): a gateway to big data and AI-powered innovations in catalysis. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/6760cd4381d2151a02fb5356 (2024).

  44. Mitchell, S. et al. Automated image analysis for single-atom detection in catalytic materials by transmission electron microscopy. J. Am. Chem. Soc. 144, 8018–8029 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Moro, V. et al. Multimodal foundation models for material property prediction and discovery. Newton 1, 100016 (2025).

    Article  Google Scholar 

  46. Pyzer-Knapp, E. O. et al. Foundation models for materials discovery-current state and future directions. npj Comput. Mater. 11, 61 (2025).

    Article  Google Scholar 

  47. Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    Article  CAS  Google Scholar 

  50. Toney, J. W., St Michel, R. G., Garrison, A. G., Kevlishvili, I. & Kulik, H. J. Graph neural networks for predicting metal-ligand coordination of transition metal complexes. Proc. Natl Acad. Sci. USA 122, e2415658122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhao, R., Li, Q., Yang, J., Zhu, C. & Che, F. Integrating physical principles with machine learning for predicting field-enhanced catalysis. JACS Au 5, 1121–1132 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwaller, P. et al. Mapping the space of chemical reactions using attention-based neural networks. Nat. Mach. Intell. 3, 144–152 (2021).

    Article  Google Scholar 

  53. Mok, D. H. & Back, S. Generative pretrained transformer for heterogeneous catalysts. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c11504 (2024).

    Article  PubMed  Google Scholar 

  54. Wang, S. et al. Transfer learning aided high-throughput computational design of oxygen evolution reaction catalysts in acid conditions. J. Energy Chem. 80, 744–757 (2023).

    Article  CAS  Google Scholar 

  55. Noto, N. et al. Transfer learning across different photocatalytic organic reactions. Nat. Commun. 16, 3388 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at http://arxiv.org/abs/1312.6114 (2013).

  57. Goodfellow, I. J. et al. Generative adversarial networks. Preprint at http://arxiv.org/abs/1406.2661 (2014).

  58. Song, Y. et al. Score-based generative modeling through stochastic differential equations. Preprint at http://arxiv.org/abs/2011.13456 (2020).

  59. Holderrieth, P. & Erives, E. An introduction to flow matching and diffusion models. Preprint at http://arxiv.org/abs/2506.02070 (2025).

  60. Ishikawa, A. Heterogeneous catalyst design by generative adversarial network and first-principles based microkinetics. Sci. Rep. 12, 11657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song, Z. et al. Inverse design of promising electrocatalysts for CO2 reduction via generative models and bird swarm algorithm. Nat. Commun. 16, 1053 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xie, T., Fu, X., Ganea, O.-E., Barzilay, R. & Jaakkola, T. Crystal diffusion variational autoencoder for periodic material generation. Preprint at http://arxiv.org/abs/2110.06197 (2021).

  63. Cheng, M. et al. Enhancing materials discovery with valence constrained design in generative modeling. Preprint at http://arxiv.org/abs/2507.19799 (2025).

  64. Joshi, C. K. et al. All-atom diffusion transformers: unified generative modelling of molecules and materials. Preprint at http://arxiv.org/abs/2503.03965 (2025).

  65. Ock, J., Badrinarayanan, S., Magar, R., Antony, A. & Barati Farimani, A. Multimodal language and graph learning of adsorption configuration in catalysis. Nat. Mach. Intell. 6, 1501–1511 (2024).

    Article  Google Scholar 

  66. Rocabert-Oriols, P., Lo Conte, C., López, N. & Heras-Domingo, J. Multi-modal contrastive learning for chemical structure elucidation with VibraCLIP. Digit. Discov. 4, 3818–3827 (2025).

    Article  CAS  Google Scholar 

  67. Ozawa, K., Suzuki, T., Tonogai, S. & Itakura, T. Graph-text contrastive learning of inorganic crystal structure toward a foundation model of inorganic materials. Sci. Technol. Adv. Mater. Methods 4, 2406219 (2024).

    Google Scholar 

  68. Kim, H., Choi, H., Kang, D., Lee, W. B. & Na, J. Materials discovery with extreme properties via reinforcement learning-guided combinatorial chemistry. Chem. Sci. 15, 7908–7925 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Esterhuizen, J. A., Mathur, A., Goldsmith, B. R. & Linic, S. High-performance iridium-molybdenum oxide electrocatalysts for water oxidation in acid: Bayesian optimization discovery and experimental testing. J. Am. Chem. Soc. 146, 5511–5522 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Ramirez, A. et al. Accelerated exploration of heterogeneous CO2 hydrogenation catalysts by Bayesian-optimized high-throughput and automated experimentation. Chem Catal. 4, 100888 (2024).

    CAS  Google Scholar 

  71. Tran, K. & Ulissi, Z. W. Active learning across intermetallics to guide discovery of electrocatalysts for CO2 reduction and H2 evolution. Nat. Catal. 1, 696–703 (2018).

    Article  CAS  Google Scholar 

  72. Pillai, H. S. et al. Interpretable design of Ir-free trimetallic electrocatalysts for ammonia oxidation with graph neural networks. Nat. Commun. 14, 792 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Suvarna, M. et al. Active learning streamlines development of high performance catalysts for higher alcohol synthesis. Nat. Commun. 15, 5844 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, H., Yin, J., Li, J. & Wang, X. Theoretical high-throughput screening of single-atom CO2 electroreduction catalysts to methanol using active learning. Engineering 52, 172–182 (2025).

    Article  CAS  Google Scholar 

  75. Lan, T. & An, Q. Discovering catalytic reaction networks using deep reinforcement learning from first-principles. J. Am. Chem. Soc. 143, 16804–16812 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Yoon, J. et al. Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. Mach. Learn. Sci. Technol. 2, 045018 (2021).

    Article  Google Scholar 

  77. Volk, A. A. et al. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 14, 1403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Suvarna, M., Araújo, T. P. & Pérez-Ramírez, J. A generalized machine learning framework to predict the space-time yield of methanol from thermocatalytic CO2 hydrogenation. Appl. Catal. B 315, 121530 (2022).

    Article  CAS  Google Scholar 

  79. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11, 5966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qian, J. et al. Digital twin for chemical science: a case study on water interactions on the Ag(111) surface. Nat. Comput. Sci. 5, 793–800 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xin, H., Kitchin, J. R. & Kulik, H. J. Towards agentic science for advancing scientific discovery. Nat. Mach. Intell. 7, 1373–1375 (2025).

    Article  Google Scholar 

  82. Zou, Y. et al. El Agente: an autonomous agent for quantum chemistry. Matter 8, 102263 (2025).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. A multimodal robotic platform for multi-element electrocatalyst discovery. Nature 647, 390–396 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the National Science Foundation under award no. 2409631, provided jointly by the Catalysis Program (R. McCabe) in the Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET) and the Chemical Catalysis Program (K. Moloy) in the Division of Chemistry (CHE), for the AI for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis Workshop. H.X. acknowledges funding support from the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Chemical Sciences, Geosciences and Biosciences Division (DE-SC0023323) and from the National Science Foundation under award no. 2245402 through the CDS&E Program and the CBET Catalysis Program. N.M.S. acknowledges the Big Ten Conference Center for providing meeting space and technical support for the workshop. W.J.S. acknowledges funding from the US DOE, Office of Science, Office of BES, Division of Chemical Sciences, Geosciences and Biosciences (FWP 47319). N.L. acknowledges PID2024-157556OB-I00, funded by MICIU/AEI/10.13039/501100011033/FEDER, UE, BSC-RES and EuroHPC-JU. T.L. acknowledges funding from NCCR Catalysis (grant nos. 180544 and 225147), a National Centre of Competence in Research funded by the Swiss National Science Foundation. L.C.G. acknowledges support from the National Science Foundation under award no. 2401067. L.Q. is supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Catalysis Science program. Ames National Laboratory is operated for the US DOE by Iowa State University under contract no. DE-AC02-07CH11358. G.T.K.K.G. acknowledges start-up funding support from the School of Sustainable Chemical, Biological and Materials Engineering at the University of Oklahoma. We are also grateful to D. J. Kleinbaum and J. Hostetler from Emerald Cloud Lab, Tian Xie (Microsoft Research) and P. Majumdar (Core R&D, Dow) for insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.X., J.R.K., N.L., and N.M.S. conceived the article and jointly led the development of the roadmap. H.X. coordinated the writing process. All authors (H.X., J.R.K., N.L., N.M.S., N.A., F.C., L.C.G., G.T.K.K.G., H.J.K., T.L., H.L., S.L., A.J.M., R.J.M., J.P., C.P., J.Q., L.Q., W.J.S., Z.W.U., S.W., and X.W.) contributed ideas, domain expertise, and specific content to the manuscript, and all authors reviewed, edited, and approved the final version.

Corresponding authors

Correspondence to Hongliang Xin, John R. Kitchin, Núria López or Neil M. Schweitzer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Hyung Chul Ham and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, H., Kitchin, J.R., López, N. et al. Roadmap for transforming heterogeneous catalysis with artificial intelligence. Nat Catal (2026). https://doi.org/10.1038/s41929-026-01479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41929-026-01479-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing