Fig. 5

SAXS-guided modelling of the TeLPOR holoprotein dimer and TeLPOR truncation. a Root mean square fluctuation (RMSF) per residue obtained from the MD simulations of the TeLPOR apoprotein monomer (blue) and the TeLPOR holoprotein dimer (red). Grey vertical bars mark dimer interface residues. b, c SAXS scattering curve and Kratky plot (I(q).q2 versus q) showing the experimental scattering data of the holoprotein (red, open circles) and the fit of the OLIGOMER-derived theoretical scattering curve of a monomer/dimer mixture of dimer 4b (blue, solid line). d Averaged and filtered GASBORMX-derived ab initio bead model of the dimeric holoprotein complex as SITUS-derived envelope (transparent, grey surface), superimposed with the best TeLPOR holoprotein dimer model (dimer model 4b; Supplementary Table 3) Subunits colored as indicated above the figure, with the protruding C-terminal α-helix in green). e One subunit of TeLPOR (red cartoon), with 51 C-terminal amino acids shown as green cartoon, illustrating the truncation positions (P272, V279 and A302; as green spheres) to produce the variants TeLPOR-Δ51, TeLPOR-Δ44 and TeLPOR-Δ21. f Light-dependent Pchlide turnover, analysed using cell-free cell extracts of E.coli BL21(DE3) cells producing TeLPOR-Δ51, TeLPOR-Δ44 and TeLPOR-Δ21 and wild type TeLPOR. Sample identity as indicated in the Figure