Fig. 1: Whole genome assembly of Harukei-3 melon. | Communications Biology

Fig. 1: Whole genome assembly of Harukei-3 melon.

From: Comparative genomics of muskmelon reveals a potential role for retrotransposons in the modification of gene expression

Fig. 1

a Harukei-3 melon fruit. b Histograms of sequenced reads in Oxford Nanopore technology (ONT, R9.4.1 and R10 flow cells) or PacBio RSII. Ultra-long reads with >60 kb are present only in ONT dataset. Reads with ≥5 kb were used for de novo assembly (for detailed procedure see Supplementary Fig. 2). c Construction of the chromosome-scale pseudomolecule in Harukei-3. d Comparison between linkage map and assembled pseudomolecule. Linkage maps were obtained in the genetic population derived from Harukei-3 and I-10 accessions16. Physical and genetic positions of 167 markers are shown. e Genomic alignment between Harukei-3 and DHL92 genomes. Right panels show examples of large genomic block duplication (>120 kb) that are present (or assembled) in the Harukei-3 genome. Blue and red dots indicate that DNA is aligned in forward or reverse directions, respectively. Unanchored sequences are indicated by red rectangles.

Back to article page