Table 2 Computational tools and associated methods for spatial transcriptomics data analysis and visualisation.
From: From whole-mount to single-cell spatial assessment of gene expression in 3D
Tool | Underlying method | Open-source | Input | Output | Programming language | Source code |
|---|---|---|---|---|---|---|
RNAscope29 | Proprietary software | No | N/A | N/A | N/A | N/A |
DistMap50 | Distributed mapping scores | Yes | Count matrix, reference in situ coordinates | Expression patterns | R | |
NMFreg61 | Non-negative matrix factorization regression | Yes | Count matrix, 2D spatial coordinates | Expression patterns | Python | |
LIGER64 | Integrative non-negative matrix factorization | Yes | Count matrix, scMethylation, scATAC-seq | Expression patterns, cell clusters | R | |
Harmony65 | Maximum diversity clustering, linear batch correction | Yes | Count matrix, MERFISH coordinates | Expression patterns | R | |
SpaOTsc67 | Structured optimal transport | Yes | Count matrix, spatial coordinates, dissimilarity matrices | Expression patterns | Python | |
NovoSpaRc69 | Generalised optimal-transport | Yes | Count matrix, target space image | Expression patterns | Python | |
ScoMAP70 | Axial information extraction via pseudotime ordering | Yes | Count matrix, virtual spatial template | Expression patterns | R | |
CSOmap71 | Cellular Spatial Organization mapper | Yes | Count matrix, label, ligand-receptor | Expression patterns | MatLab | |
Giotto68 | Binary Spatial extraction, hidden Markov random field (HMRF) model | Yes | Count matrix, spatial coordinates | Expression patterns | R, Python | |
SPOTlight98 | Seeded non-negative matrix factorization (NMF) regression | Yes | Count matrix, spatial coordinates | Expression patterns | R |