Table 1 Summarized effects of predictors on ecosystem services and food web metrics.

From: Species diversity and food web structure jointly shape natural biological control in agricultural landscapes

Method

Predictor

Response variable

Coeffb

P

Linear regression

EDS

ES

0.10

0.158

GLM

Gq

ES

−0.13

0.020

GLM

Vq

EDS

0.12

0.007

GLM

NCH

ES

0.25

0.066

GLM

Maize

EDS

0.44

0.061

 

NCH

EDS

0.88

0.077

GLM

Intercepta

Gq

1.26

0.561

GLM

SC

Vq

−3.21

0.034

GLM

Intercept

Parasitoid richness

1.84

<0.001

GLM

Cotton

Parasitoid diversity

−0.80

0.113

 

SC

Parasitoid diversity

0.68

0.062

GLM

Intercept

Parasitoid richness

4.12

<0.001

GLM

Intercept

Hyperparasitoid diversity

0.11

<0.001

LMM

Parasitoid richness

ES

−0.06

0.001

 

NCH

ES

0.20

0.061

LMM

Vq

EDS

0.11

0.010

 

NCH

EDS

0.57

0.076

Path analysis

Parasitoid richness

ES

−0.524

0.043

 

Parasitoid diversity

ES

0.072

0.859

 

Gq

ES

−0.163

0.705

 

Gq

Parasitoid richness

0.693

0.000

 

Parasitoid diversity

Gq

0.899

0.000

Path analysis

Vq

EDS

0.514

0.009

 

Hyperparasitoid diversity

Vq

0.824

0.000

 

SC

Vq

−0.449

0.000

 

Hyperparasitoid richness

Hyperparasitoid diversity

0.778

0.000

  1. Analyses include linear regression, generalized linear model (GLM), linear mixed effect model (LMM), and path analysis with structural equation models (SEM). Effects are assessed of multiple predictors on either ecosystem services (ES; parasitism) or disservices (EDS; hyperparasitism). Detailed descriptions of all variables are provided in Supplementary Table 1.
  2. Gq and Vq are the generality and vulnerability of primary-hyperparasitoid food web; NCH is non-crop habitat cover, SC is secondary crop cover.
  3. aBest model without landscape variables.
  4. bRegression effect coefficient.