Table 1 Lists of deep learning architectures selected for the validation and related characteristics: layers used and total number of features extracted.

From: Deep-Manager: a versatile tool for optimal feature selection in live-cell imaging analysis

 

ResNET101 He et al., 2016

VGG19 A Bhandary et al., 2020

NasNETLarge Zoph et al., 2018

DenseNET201 Huang et al, 2017

Layer

‘average-pool5’

‘max-pool5’

‘global_average_pool5’

‘average_pool5’

N. of features

2048

25088

4032

1920

Input Layer size

224 × 224 × 3

224 × 224 × 3

331 × 331 × 3

224 × 224 × 3