Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
Prolonged visual experience accelerates developmental synaptic downscaling via epigenetic regulation and Rab5c mediated AMPA receptor trafficking
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Prolonged visual experience accelerates developmental synaptic downscaling via epigenetic regulation and Rab5c mediated AMPA receptor trafficking

  • Lijun Zheng1,2,3 na1,
  • Xinyi Duan1 na1,
  • Wenyi Huang1,
  • Yuhao Luo1,
  • Yufei Wu1,
  • Qihui Lin1,
  • Xiaohua Wu1,
  • Lu Han1 &
  • …
  • Wanhua Shen  ORCID: orcid.org/0000-0002-5178-95611 

Communications Biology , Article number:  (2026) Cite this article

  • 1140 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell growth
  • Synaptic plasticity
  • Synaptic transmission

Abstract

Environmental light significantly influences neural development, yet the specific mechanisms underlying the effects of prolonged visual experience on homeostatic synaptic scaling remain unclear. Using manipulated ambient light conditions, we observed reduced mEPSC amplitudes and visually evoked responses in 20 hr light/4 hr dark (20LE) compared to a standard 12 hr light/12 hr dark (12LE) reared Xenopus laevis tadpoles. Prolonged light exposure accelerates the developmental decline of glutamatergic synaptic transmission via Rab5c-dependent endocytosis of AMPA receptor (AMPAR) subunits GluA1 and GluA2. The synaptic changes were accompanied by increased intrinsic neuronal excitability, but unchanged presynaptic release probability, and coincided with altered dendritic architecture. Notably, synaptic transmission and AMPAR expression were reversible upon re-exposure to standard 12LE conditions. Class I HDAC-mediated histone acetylation links epigenetic regulation to sustained AMPAR downregulation, revealing a two-stage process in which prolonged visual experience drives homeostatic synaptic downscaling through coordinated transcriptional/epigenetic mechanism and Rab5c-mediated trafficking.

Similar content being viewed by others

Gating and modulation of a hetero-octameric AMPA glutamate receptor

Article 02 June 2021

AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions

Article Open access 23 August 2021

GluA2-containing AMPA receptors form a continuum of Ca2+-permeable channels

Article 19 March 2025

Data availability

All data and materials generated in this study are available in the main text and supplementary materials. Source data for all graphs can be found in the Supplementary Data. All sequencing data have been deposited at the NCBI Sequence Read Archive under accession no. PRJNA1375510.

References

  1. Shen, W. H. et al. Acute synthesis of CPEB is required for plasticity of visual avoidance behavior in Xenopus. Cell Rep. 6, 737–747 (2014).

    Google Scholar 

  2. Ruan, H. Z. et al. Visual experience dependent regulation of neuronal structure and function by histone deacetylase 1 in developing Xenopus tectum in vivo. Dev. Neurobiol. 77, 947–962 (2017).

    Google Scholar 

  3. Shen, W. H., Da Silva, J. S., He, H. Y. & Cline, H. T. Type A GABA-receptor-dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J. Neurosci. 29, 5032–5043 (2009).

    Google Scholar 

  4. Gao, M. et al. A specific requirement of Arc/Arg3.1 for visual experience-induced homeostatic synaptic plasticity in mouse primary visual cortex. J. Neurosci. 30, 7168–7178 (2010).

    Google Scholar 

  5. Xu, H., Khakhalin, A. S., Nurmikko, A. V. & Aizenman, C. D. Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system. J. Neurosci. 31, 8025–8036 (2011).

    Google Scholar 

  6. He, H. Y., Shen, W. H., Zheng, L. J., Guo, X. & Cline, H. T. Excitatory synaptic dysfunction cell-autonomously decreases inhibitory inputs and disrupts structural and functional plasticity. Nat. Commun. 9, 2893 (2018).

    Google Scholar 

  7. Desai, N. S., Cudmore, R. H., Nelson, S. B. & Turrigiano, G. G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nat. Neurosci. 5, 783–789 (2002).

    Google Scholar 

  8. Aizenman, C. D., Muñoz-Elı́as, G. & Cline, H. T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Google Scholar 

  9. Nataraj, K., Le Roux, N., Nahmani, M., Lefort, S. & Turrigiano, G. Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity. Neuron 68, 750–762 (2010).

    Google Scholar 

  10. Haas, K., Li, J. L. & Cline, H. T. AMPA receptors regulate experience-dependent dendritic arbor growth. Proc. Natl. Acad. Sci. USA 103, 12127–12131 (2006).

    Google Scholar 

  11. Turrigiano, G. G. Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same. Trends Neurosci. 22, 221–227 (1999).

    Google Scholar 

  12. Pratt, K. G. & Aizenman, C. D. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27, 8268–8277 (2007).

    Google Scholar 

  13. Shen, W. H., McKeown, C. R., Demas, J. A. & Cline, H. T. Inhibition to excitation ratio regulates visual system responses and behavior in vivo. J. Neurophysiol. 106, 2285–2302 (2011).

    Google Scholar 

  14. Hartman, K. N., Pal, S. K., Burrone, J. & Murthy, V. N. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nat. Neurosci. 9, 642–649 (2006).

    Google Scholar 

  15. Gainey, M. A., Tatavarty, V., Nahmani, M., Lin, H. & Turrigiano, G. G. Activity-dependent synaptic GRIP1 accumulation drives synaptic scaling up in response to action potential blockade. Proc. Natl. Acad. Sci. USA 112, E3590–E3599 (2015).

    Google Scholar 

  16. Keck, T. et al. Synaptic scaling and homeostatic plasticity in the mouse visual cortex in vivo. Neuron 80, 327–334 (2013).

    Google Scholar 

  17. Cingolani, L. A. et al. Activity-dependent regulation of synaptic AMPA receptor composition and abundance by β3 integrins. Neuron 58, 749–762 (2008).

    Google Scholar 

  18. Aizenman, C. D., Akerman, C. J., Jensen, K. R. & Cline, H. T. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39, 831–842 (2003).

    Google Scholar 

  19. Fong, M. F., Newman, J. P., Potter, S. M. & Wenner, P. Upward synaptic scaling is dependent on neurotransmission rather than spiking. Nat. Commun. 6, 6339 (2015).

    Google Scholar 

  20. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Google Scholar 

  21. Bredt, D. S. & Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Google Scholar 

  22. Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and behavior. Neuron 61, 340–350 (2009).

    Google Scholar 

  23. Wu, G. Y., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Google Scholar 

  24. Carroll, R. C. et al. Dynamin-dependent endocytosis of ionotropic glutamate receptors. Proc. Natl. Acad. Sci. USA 96, 14112–14117 (1999).

    Google Scholar 

  25. Henley, J. M., Barker, E. A. & Glebov, O. O. Routes, destinations and delays: recent advances in AMPA receptor trafficking. Trends Neurosci. 34, 258–268 (2011).

    Google Scholar 

  26. Zheng, N., Jeyifous, O., Munro, C., Montgomery, J. M. & Green, W. N. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways. eLife 4, e06878 (2015).

  27. Shen, W. H. et al. Activity-induced rapid synaptic maturation mediated by presynaptic Cdc42 signaling. Neuron 50, 401–414 (2006).

    Google Scholar 

  28. Plant, K. et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation. Nat. Neurosci. 9, 602–604 (2006).

    Google Scholar 

  29. Shi, S.-H., Hayashi, Y., Esteban, J. A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105, 331–343 (2001).

    Google Scholar 

  30. Chowdhury, S. et al. Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron 52, 445–459 (2006).

    Google Scholar 

  31. Béïque, J.-C., Na, Y., Kuhl, D., Worley, P. F. & Huganir, R. L. Arc-dependent synapse-specific homeostatic plasticity. Proc. Natl. Acad. Sci. USA 108, 816–821 (2010).

    Google Scholar 

  32. Shepherd, J. D. et al. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 52, 475–484 (2006).

    Google Scholar 

  33. Zhu, Y. et al. Rap2-JNK removes synaptic AMPA receptors during depotentiation. Neuron 46, 905–916 (2005).

    Google Scholar 

  34. Zhu, J. J., Qin, Y., Zhao, M., Van Aelst, L. & Malinow, R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110, 443–455 (2002).

    Google Scholar 

  35. Okuda, T., Yu, L. M. Y., Cingolani, L. A., Kemler, R. & Goda, Y. beta-Catenin regulates excitatory postsynaptic strength at hippocampal synapses. Proc. Natl. Acad. Sci. USA 104, 13479–13484 (2007).

    Google Scholar 

  36. Sanderson, J. L., Scott, J. D. & Dell’Acqua, M. L. Control of homeostatic synaptic plasticity by AKAP-anchored kinase and phosphatase regulation of Ca2+-permeable AMPA receptors. J. Neurosci. 38, 2863–2876 (2018).

    Google Scholar 

  37. Seeburg, D. P., Feliu-Mojer, M., Gaiottino, J., Pak, D. T. S. & Sheng, M. Critical role of CDK5 and polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58, 571–583 (2008).

    Google Scholar 

  38. Brown, T. C., Tran, I. C., Backos, D. S. & Esteban, J. A. NMDA receptor-dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron 45, 81–94 (2005).

    Google Scholar 

  39. Fernández-Monreal, M., Brown, T. C., Royo, M. & Esteban, J. A. The balance between receptor recycling and trafficking toward lysosomes determines synaptic strength during long-term depression. J. Neurosci. 32, 13200–13205 (2012).

    Google Scholar 

  40. Brown, T. C., Correia, S. S., Petrok, C. N. & Esteban, J. A. Functional compartmentalization of endosomal trafficking for the synaptic delivery of AMPA receptors during long-term potentiation. J. Neurosci. 27, 13311–13315 (2007).

    Google Scholar 

  41. Gu, Y. et al. Differential vesicular sorting of AMPA and GABAA receptors. Proc. Natl. Acad. Sci. USA 113, E922–E931 (2016).

    Google Scholar 

  42. Mignogna, M. L. et al. The intellectual disability protein rab39b selectively regulates GluA2 trafficking to determine synaptic AMPAR composition. Nat. Commun. 6, 6504 (2015).

    Google Scholar 

  43. de Hoop, M. J. et al. The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron 13, 11–22 (1994).

    Google Scholar 

  44. Bucci, C. et al. The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell 70, 715–728 (1992).

    Google Scholar 

  45. Park, M., Penick, E. C., Edwards, J. G., Kauer, J. A. & Ehlers, M. D. Recycling endosomes supply AMPA receptors for LTP. Science 305, 1972–1975 (2004).

    Google Scholar 

  46. Petrini, E. M. et al. Endocytic trafficking and recycling maintain a pool of mobile surface AMPA receptors required for synaptic potentiation. Neuron 63, 92–105 (2009).

    Google Scholar 

  47. Steinmetz, C. C. et al. Upregulation of μ3A drives homeostatic plasticity by rerouting AMPAR into the recycling endosomal pathway. Cell Rep. 16, 2711–2722 (2016).

    Google Scholar 

  48. Chiu, S. L. et al. GRASP1 regulates synaptic plasticity and learning through endosomal recycling of AMPA receptors. Neuron 93, 1405–1419 (2017).

    Google Scholar 

  49. Ehlers, M. D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Google Scholar 

  50. Esteves da Silva, M. et al. Positioning of AMPA receptor-containing endosomes regulates synapse architecture. Cell Rep. 13, 933–943 (2015).

    Google Scholar 

  51. Stefanko, D. P., Barrett, R. M., Ly, A. R., Reolon, G. K. & Wood, M. A. Modulation of long-term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. USA 106, 9447–9452 (2009).

    Google Scholar 

  52. Guan, J. S. et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459, 55–60 (2009).

    Google Scholar 

  53. Hanson, J. E. et al. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons. J. Neurosci. 33, 5924–5929 (2013).

    Google Scholar 

  54. Koshibu, K. et al. Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29, 13079–13089 (2009).

    Google Scholar 

  55. Gao, J. et al. HDAC3 but not HDAC2 mediates visual experience-dependent radial glia proliferation in the developing Xenopus tectum. Front. Cell. Neurosci. 10, 221 (2016).

    Google Scholar 

  56. Wei, J. et al. Histone modification of ubiquitin ligase controls the loss of AMPA receptors and cognitive impairment induced by repeated stress. J. Neurosci. 36, 2119–2130 (2016).

    Google Scholar 

  57. Bhattacharya, S. et al. Histone deacetylase inhibition induces odor preference memory extension and maintains enhanced AMPA receptor expression in the rat pup model. Learn. Mem. 24, 543–551 (2017).

    Google Scholar 

  58. Asaoka, N. et al. Inhibition of histone deacetylases enhances the function of serotoninergic neurons in organotypic raphe slice cultures. Neurosci. Lett. 593, 72–77 (2015).

    Google Scholar 

  59. Aizenman, C. D. & Cline, H. T. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. J. Neurophysiol. 97, 2949–2957 (2007).

    Google Scholar 

  60. Akerman, C. J. & Cline, H. T. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci. 30, 382–389 (2007).

    Google Scholar 

  61. Khakhalin, A. S., Koren, D., Gu, J., Xu, H. & Aizenman, C. D. Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles. Eur. J. Neurosci. 40, 2948–2962 (2014).

    Google Scholar 

  62. Ibata, K., Sun, Q. & Turrigiano, G. G. Rapid synaptic scaling induced by changes in postsynaptic firing. Neuron 57, 819–826 (2008).

    Google Scholar 

  63. Goold, C. P. & Nicoll, R. A. Single-cell optogenetic excitation drives homeostatic synaptic depression. Neuron 68, 512–528 (2010).

    Google Scholar 

  64. Schaukowitch, K. et al. An intrinsic transcriptional program underlying synaptic scaling during activity suppression. Cell Rep. 18, 1512–1526 (2017).

    Google Scholar 

  65. Zhong, P., Liu, W. H., Gu, Z. L. & Yan, Z. Serotonin facilitates long-term depression induction in prefrontal cortex via p38 MAPK/Rab5-mediated enhancement of AMPA receptor internalization. J. Physiol. 586, 4465–4479 (2008).

    Google Scholar 

  66. Snigdha, S. et al. H3K9me3 inhibition improves memory, promotes spine formation, and increases BDNF levels in the aged hippocampus. J. Neurosci. 36, 3611–3622 (2016).

    Google Scholar 

  67. Kopp, C., Longordo, F., Nicholson, J. R. & Lüthi, A. Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J. Neurosci. 26, 12456–12465 (2006).

    Google Scholar 

  68. Tao, H. W. & Poo, M. -m Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. Neuron 45, 829–836 (2005).

    Google Scholar 

  69. Niell, C. M. & Smith, S. J. Functional imaging reveals rapid development of visual response properties in the Zebrafish tectum. Neuron 45, 941–951 (2005).

    Google Scholar 

  70. Zhou, Q., Tao, H. W. & Poo, M. -m Reversal and stabilization of synaptic modifications in a developing visual system. Science 300, 1953–1957 (2003).

    Google Scholar 

  71. Whitt, J. L., Petrus, E. & Lee, H. K. Experience-dependent homeostatic synaptic plasticity in neocortex. Neuropharmacology 78, 45–54 (2014).

    Google Scholar 

  72. O’Brien, R. J. et al. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 21, 1067–1078 (1998).

    Google Scholar 

  73. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Google Scholar 

  74. Huang, L. C., Mckeown, C. R., He, H. Y., Ta, A. C. & Cline, H. T. BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles. Proc. Natl. Acad. Sci. USA 121, e2316542121 (2024).

    Google Scholar 

  75. Ta, A. C. et al. Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles. G3 12, kab387 (2022).

  76. Goel, A. et al. Cross-modal regulation of synaptic AMPA receptors in primary sensory cortices by visual experience. Nat. Neurosci. 9, 1001–1003 (2006).

    Google Scholar 

  77. Zhang, M. et al. Functional elimination of excitatory feedforward inputs underlies developmental refinement of visual receptive fields in Zebrafish. J. Neurosci. 31, 5460–5469 (2011).

    Google Scholar 

  78. Rohrbough, J. & Spitzer, N. C. Ca2+-permeable AMPA receptors and spontaneous presynaptic transmitter release at developing excitatory spinal synapses. J. Neurosci. 19, 8528–8541 (1999).

    Google Scholar 

  79. Thiagarajan, T. C., Piedras-Renteria, E. S. & Tsien, R. W. α- and βCaMKII: inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 36, 1103–1114 (2002).

    Google Scholar 

  80. Wierenga, C. J., Ibata, K. & Turrigiano, G. G. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J. Neurosci. 25, 2895–2905 (2005).

    Google Scholar 

  81. Lanté, F., Toledo-Salas, J.-C., Ondrejcak, T., Rowan, M. J. & Ulrich, D. Removal of synaptic Ca2+-permeable AMPA receptors during sleep. J. Neurosci. 31, 3953–3961 (2011).

    Google Scholar 

  82. Makino, H. & Malinow, R. AMPA receptor incorporation into synapses during LTP: The role of lateral movement and exocytosis. Neuron 64, 381–390 (2009).

    Google Scholar 

  83. He, K. W., Petrus, E., Gammon, N. & Lee, H. K. Distinct sensory requirements for unimodal and cross-modal homeostatic synaptic plasticity. J. Neurosci. 32, 8469–8474 (2012).

    Google Scholar 

  84. Hou, Q. M. et al. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat. Commun. 6, 10045 (2015).

    Google Scholar 

  85. Heo, H. Y., Kim, K. S. & Seol, W. Coordinate regulation of neurite outgrowth by LRRK2 and its interactor, Rab5. Exp. Neurobiol. 19, 97–105 (2010).

    Google Scholar 

  86. Szíber, Z. et al. Ras and Rab interactor 1 controls neuronal plasticity by coordinating dendritic filopodial motility and AMPA receptor turnover. Mol. Biol. Cell 28, 285–295 (2017).

    Google Scholar 

  87. Mori, Y., Matsui, T. & Fukuda, M. Rabex-5 protein regulates dendritic localization of small GTPase Rab17 and neurite morphogenesis in hippocampal neurons. J. Biol. Chem. 288, 9835–9847 (2013).

    Google Scholar 

  88. Villarroel-Campos, D., Bronfman, F. C. & Gonzalez-Billault, C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton 73, 498–507 (2016).

    Google Scholar 

  89. Gainey, M. A., Hurvitz-Wolff, J. R., Lambo, M. E. & Turrigiano, G. G. Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J. Neurosci. 29, 6479–6489 (2009).

    Google Scholar 

  90. Kumar, S. S., Bacci, A., Kharazia, V. & Huguenard, J. R. A developmental switch of AMPA receptor subunits in neocortical pyramidal neurons. J. Neurosci. 22, 3005–3015 (2002).

    Google Scholar 

  91. Lawrence, J. J. & Trussell, L. O. Long-term specification of AMPA receptor properties after synapse formation. J. Neurosci. 20, 4864–4870 (2000).

    Google Scholar 

  92. Zhou, Z. et al. The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning. Nat. Neurosci. 21, 50–62 (2017).

    Google Scholar 

  93. Lin, D. T. & Huganir, R. L. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization. J. Neurosci. 27, 13903–13908 (2007).

    Google Scholar 

  94. Passafaro, M., Piëch, V. & Sheng, M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons. Nat. Neurosci. 4, 917–926 (2001).

    Google Scholar 

  95. Gromova, K. V. et al. The kinesin Kif21b binds myosin va and mediates changes in actin dynamics underlying homeostatic synaptic downscaling. Cell Rep. 42, 112743 (2023).

    Google Scholar 

  96. Hou, Q. M., Gilbert, J. & Man, H. Y. Homeostatic regulation of AMPA receptor trafficking and degradation by light-controlled single-synaptic activation. Neuron 72, 806–818 (2011).

    Google Scholar 

  97. Matsuda, S. et al. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression. Nat. Commun. 4, 2759 (2013).

    Google Scholar 

  98. Peng, Y. R. et al. Coordinated changes in dendritic arborization and synaptic strength during neural circuit development. Neuron 61, 71–84 (2009).

    Google Scholar 

  99. Hsieh, H. et al. AMPAR removal underlies Aβ-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843 (2006).

    Google Scholar 

  100. Akhtar, M. W. et al. Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. J. Neurosci. 29, 8288–8297 (2009).

    Google Scholar 

  101. Jayanthi, S. et al. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry 76, 47–56 (2014).

    Google Scholar 

  102. Authement, M. E. et al. Histone deacetylase inhibition rescues maternal deprivation-induced GABAergic metaplasticity through restoration of AKAP signaling. Neuron 86, 1240–1252 (2015).

    Google Scholar 

  103. Nieuwkoop, P. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland Publishing Inc, 1994).

Download references

Acknowledgements

This work was supported by the Interdisciplinary Research Project of Hangzhou Normal University (2024JCXK01) and the National Natural Science Foundation of China (NSFC 31871041).

Author information

Author notes
  1. These authors contributed equally: Lijun Zheng, Xinyi Duan.

Authors and Affiliations

  1. Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China

    Lijun Zheng, Xinyi Duan, Wenyi Huang, Yuhao Luo, Yufei Wu, Qihui Lin, Xiaohua Wu, Lu Han & Wanhua Shen

  2. Chinese Institute for Brain Research, Beijing, China

    Lijun Zheng

  3. School of Basic Medical Sciences, Capital Medical University, Beijing, China

    Lijun Zheng

Authors
  1. Lijun Zheng
    View author publications

    Search author on:PubMed Google Scholar

  2. Xinyi Duan
    View author publications

    Search author on:PubMed Google Scholar

  3. Wenyi Huang
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuhao Luo
    View author publications

    Search author on:PubMed Google Scholar

  5. Yufei Wu
    View author publications

    Search author on:PubMed Google Scholar

  6. Qihui Lin
    View author publications

    Search author on:PubMed Google Scholar

  7. Xiaohua Wu
    View author publications

    Search author on:PubMed Google Scholar

  8. Lu Han
    View author publications

    Search author on:PubMed Google Scholar

  9. Wanhua Shen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.Z. and W.S. designed the experiment. L.Z., X.D., W.H., Y.L., Y.W., Q.L., X.W., L.H., and W.S. performed the experiments. L.Z., X.D. and W.S. analyzed the data. W.S. wrote the manuscript.

Corresponding author

Correspondence to Wanhua Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks Ana Luisa Carvalho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Christian Wozny and Benjamin Bessieres. [A peer review file is available.]

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data 1

Reporting Summary

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Duan, X., Huang, W. et al. Prolonged visual experience accelerates developmental synaptic downscaling via epigenetic regulation and Rab5c mediated AMPA receptor trafficking. Commun Biol (2026). https://doi.org/10.1038/s42003-025-09507-5

Download citation

  • Received: 06 December 2024

  • Accepted: 30 December 2025

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s42003-025-09507-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing