Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Biology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications biology
  3. articles
  4. article
40 Hz flicker preconditioning protects nonarteritic anterior ischemic optic neuropathy via adenosine signaling
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

40 Hz flicker preconditioning protects nonarteritic anterior ischemic optic neuropathy via adenosine signaling

  • Lingya Su1,2,3,
  • Ruojun Lu1,2,3,
  • Lijuan Huang1,2,3,
  • Manli Jia1,2,3,
  • Jing Liao1,2,3,
  • Libin Huang1,2,3,
  • Youru Wu1,2,3,
  • Tao Shi1,2,3,
  • Xianghang He1,2,3,
  • Yan He1,2,3,
  • Zuhua Sun4,
  • Jiang-Fan Chen  ORCID: orcid.org/0000-0002-0446-39561,2,3 &
  • …
  • Ying Gao  ORCID: orcid.org/0000-0002-7014-23921,2,3 

Communications Biology , Article number:  (2026) Cite this article

  • 589 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Extracellular signalling molecules
  • Mechanisms of disease

Abstract

Nonarteritic anterior ischemic optic neuropathy (NAION) is a leading cause of sudden, painless vision loss in the elderly, yet no proven intervention exists. Ischemic preconditioning (IPC) is a promising neuroprotective strategy, but defining an effective clinical protocol remains a major challenge in fulfilling its translational potential. We recently discovered that 40 Hz flicker induces extracellular adenosine, a key neurochemical underpinning of IPC, in the visual pathway, suggesting a previously unexplored non-invasive IPC approach. Here, we demonstrated that 3-day 40 Hz flicker preconditioning significantly protected against NAION by reducing retinal ganglion cell loss, preserving ganglion cell layer structure, improving visual function, and attenuating microglial activation. Protection was strongest when ischemia occurred 12 hours after preconditioning, remained moderate at 24 hours, and persisted for at least 4 weeks. This effect was specific to preconditioning and flicker frequency-dependent (effective at 40 Hz, but not at 20 Hz or 80 Hz). Furthermore, neuroprotection by 40 Hz flicker was abolished by treatment with the equilibrative nucleoside transporter inhibitor dipyridamole and the A1 receptor antagonist DPCPX. These findings establish 40 Hz flicker as a non-invasive, adenosine-mediated IPC strategy, suggesting a potentially safe and translational approach for protecting against NAION and other ocular ischemic disorders.

Similar content being viewed by others

40 Hz light flickering promotes sleep through cortical adenosine signaling

Article Open access 08 February 2024

NAION or not NAION? A literature review of pathogenesis and differential diagnosis of anterior ischaemic optic neuropathies

Article 28 September 2023

Review of evidence for treatments of acute non arteritic anterior ischemic optic neuropathy

Article 22 May 2024

Data availability

All datasets generated and analyzed in this study are presented within the main figures and Supplementary materials. The numerical source data underlying each graph are provided in Supplementary Data. Correspondence and requests for materials should be addressed to Ying Gao or Jiangfan Chen.

Code availability

No custom computer code was used in this study. All data analyses were performed using standard software.

References

  1. Bosley, T. M., Abu-Amero, K. K. & Ozand, P. T. Mitochondrial DNA nucleotide changes in non-arteritic ischemic optic neuropathy. Neurology 63, 1305–1308 (2004).

    Google Scholar 

  2. Abu-Amero, K. K. & Bosley, T. M. Increased relative mitochondrial DNA content in leucocytes of patients with NAION. Br. J. Ophthalmol. 90, 823–825 (2006).

    Google Scholar 

  3. Rizzo, J. F. 3rd. Unraveling the enigma of nonarteritic anterior ischemic optic neuropathy. J. Neuroophthalmol. 39, 529–544 (2019).

    Google Scholar 

  4. Liu, B., Yu, Y., Liu, W., Deng, T. & Xiang, D. Risk factors for non-arteritic anterior ischemic optic neuropathy: a large scale meta-analysis. Front. Med. 8, 618353 (2021).

    Google Scholar 

  5. Optic nerve decompression surgery for nonarteritic anterior ischemic optic neuropathy (NAION) is not effective and may be harmful. The Ischemic Optic Neuropathy Decompression Trial Research Group. JAMA 273, 625–632 (1995).

  6. Saxena, R. et al. Steroids versus no steroids in nonarteritic anterior ischemic optic neuropathy: a randomized controlled trial. Ophthalmology 125, 1623–1627 (2018).

    Google Scholar 

  7. Brossard Barbosa, N., Donaldson, L. & Margolin, E. Asymptomatic fellow eye involvement in nonarteritic anterior ischemic optic neuropathy. J. Neuroophthalmol. 43, 82–85 (2023).

    Google Scholar 

  8. Murry, C. E., Jennings, R. B. & Reimer, K. A. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986).

    Google Scholar 

  9. Meng, R. et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 79, 1853–1861 (2012).

    Google Scholar 

  10. Hausenloy, D. J. & Yellon, D. M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 13, 193–209 (2016).

    Google Scholar 

  11. Keevil, H., Phillips, B. E. & England, T. J. Remote ischemic conditioning for stroke: a critical systematic review. Int J. Stroke 19, 271–279 (2024).

    Google Scholar 

  12. Sharma, D., Maslov, L. N., Singh, N. & Jaggi, A. S. Remote ischemic preconditioning-induced neuroprotection in cerebral ischemia-reperfusion injury: preclinical evidence and mechanisms. Eur. J. Pharm. 883, 173380 (2020).

    Google Scholar 

  13. Hausenloy, D. J. et al. Remote ischemic preconditioning and outcomes of cardiac surgery. N. Engl. J. Med. 373, 1408–1417 (2015).

    Google Scholar 

  14. Meybohm, P. et al. A multicenter trial of remote ischemic preconditioning for heart surgery. N. Engl. J. Med. 373, 1397–1407 (2015).

    Google Scholar 

  15. Chen, H. S. et al. Effect of remote ischemic conditioning vs usual care on neurologic function in patients with acute moderate ischemic stroke: the RICAMIS randomized clinical trial. JAMA 328, 627–636 (2022).

    Google Scholar 

  16. Hou, C. et al. Chronic remote ischaemic conditioning in patients with symptomatic intracranial atherosclerotic stenosis (the RICA trial): a multicentre, randomised, double-blind sham-controlled trial in China. Lancet Neurol. 21, 1089–1098 (2022).

    Google Scholar 

  17. Tsai, C. J. et al. Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Rep. 36, 109558 (2021).

    Google Scholar 

  18. Sancho, M. et al. Adenosine signaling activates ATP-sensitive K(+) channels in endothelial cells and pericytes in CNS capillaries. Sci. Signal. 15, eabl5405 (2022).

    Google Scholar 

  19. Liu, Z. et al. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat. Commun. 8, 584 (2017).

    Google Scholar 

  20. Carlström, M., Wilcox, C. S. & Welch, W. J. Adenosine A2A receptor activation attenuates tubuloglomerular feedback responses by stimulation of endothelial nitric oxide synthase. Am. J. Physiol. Ren. Physiol. 300, F457–F464 (2011).

    Google Scholar 

  21. Paez, D. T. et al. Adenosine A(1) receptors and mitochondria: targets of remote ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 316, H743–H750 (2019).

    Google Scholar 

  22. Peart, J. N. & Headrick, J. P. Adenosinergic cardioprotection: multiple receptors, multiple pathways. Pharm. Ther. 114, 208–221 (2007).

    Google Scholar 

  23. Bookser, B. C. et al. Adenosine kinase inhibitors. 6. Synthesis, water solubility, and antinociceptive activity of 5-phenyl-7-(5-deoxy-beta-D-ribofuranosyl)pyrrolo[2,3-d]pyrimidines substituted at C4 with glycinamides and related compounds. J. Med. Chem. 48, 7808–7820 (2005).

    Google Scholar 

  24. Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A. & Yellon, D. Remote ischemic conditioning. J. Am. Coll. Cardiol. 65, 177–195 (2015).

    Google Scholar 

  25. Sun, X. et al. 40 Hz light flickering facilitates the glymphatic flow via adenosine signaling in mice. Cell Discov. 10, 81 (2024).

    Google Scholar 

  26. Zhou, X. et al. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res. 34, 214–231 (2024).

    Google Scholar 

  27. Iaccarino, H. F. et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature 540, 230–235 (2016).

    Google Scholar 

  28. Zheng, L. et al. Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity. Nat. Commun. 11, 3012 (2020).

    Google Scholar 

  29. Wang, W. et al. Gamma frequency entrainment rescues cognitive impairment by decreasing postsynaptic transmission after traumatic brain injury. CNS Neurosci. Ther. 29, 1142–1153 (2023).

    Google Scholar 

  30. Slater, B. J., Mehrabian, Z., Guo, Y., Hunter, A. & Bernstein, S. L. Rodent anterior ischemic optic neuropathy (rAION) induces regional retinal ganglion cell apoptosis with a unique temporal pattern. Investig. Ophthalmol. Vis. Sci. 49, 3671–3676 (2008).

    Google Scholar 

  31. Qin, Q. et al. Inhibiting multiple forms of cell death optimizes ganglion cells survival after retinal ischemia reperfusion injury. Cell Death Dis. 13, 507 (2022).

    Google Scholar 

  32. Wen, Y. T., Huang, T. L., Huang, S. P., Chang, C. H. & Tsai, R. K. Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION). Dis. Model Mech. 9, 1193–1202 (2016).

    Google Scholar 

  33. Santiago, A. R. et al. Keep an eye on adenosine: its role in retinal inflammation. Pharm. Ther. 210, 107513 (2020).

    Google Scholar 

  34. Ostwald, P., Park, S. S., Toledano, A. Y. & Roth, S. Adenosine receptor blockade and nitric oxide synthase inhibition in the retina: impact upon post-ischemic hyperemia and the electroretinogram. Vis. Res. 37, 3453–3461 (1997).

    Google Scholar 

  35. Roth, S. et al. Concentrations of adenosine and its metabolites in the rat retina/choroid during reperfusion after ischemia. Curr. Eye Res. 16, 875–885 (1997).

    Google Scholar 

  36. Petrovic-Djergovic, D. et al. Tissue-resident ecto-5’ nucleotidase (CD73) regulates leukocyte trafficking in the ischemic brain. J. Immunol. 188, 2387–2398 (2012).

    Google Scholar 

  37. Schadlich, I. S. et al. Nt5e deficiency does not affect post-stroke inflammation and lesion size in a murine ischemia/reperfusion stroke model. iScience 25, 104470 (2022).

    Google Scholar 

  38. Ghiardi, G. J., Gidday, J. M. & Roth, S. The purine nucleoside adenosine in retinal ischemia-reperfusion injury. Vis. Res. 39, 2519–2535 (1999).

    Google Scholar 

  39. Braas, K. M., Zarbin, M. A. & Snyder, S. H. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina. Proc. Natl. Acad. Sci. USA 84, 3906–3910 (1987).

    Google Scholar 

  40. Soliño, M. et al. Adenosine A1 receptor: a neuroprotective target in light induced retinal degeneration. PLoS ONE 13, e0198838 (2018).

    Google Scholar 

  41. Winerdal, M. et al. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury. Purinergic Signal. 12, 89–101 (2016).

    Google Scholar 

  42. Olsson, T. et al. Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur. J. Neurosci. 20, 1197–1204 (2004).

    Google Scholar 

  43. Tauskela, J. S. et al. Elevated synaptic activity preconditions neurons against an in vitro model of ischemia. J. Biol. Chem. 283, 34667–34676 (2008).

    Google Scholar 

  44. Brown, G. C. Cell death by phagocytosis. Nat. Rev. Immunol. 24, 91–102 (2024).

    Google Scholar 

  45. Xu, T. et al. The roles of microglia and astrocytes in myelin phagocytosis in the central nervous system. J. Cereb. Blood Flow. Metab. 43, 325–340 (2023).

    Google Scholar 

  46. Madeira, M. H. et al. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Transl. Res. 169, 112–128 (2016).

    Google Scholar 

  47. Madeira, M. H. et al. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J. Neuroinflammation 12, 115 (2015).

    Google Scholar 

  48. Boia, R. et al. Treatment with A(2A) receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis. 8, e3065 (2017).

    Google Scholar 

  49. Solino, M. et al. Adenosine A2A receptor: a new neuroprotective target in light-induced retinal degeneration. Front. Pharm. 13, 840134 (2022).

    Google Scholar 

  50. Roth, S. et al. Preconditioning provides complete protection against retinal ischemic injury in rats. Investig. Ophthalmol. Vis. Sci. 39, 777–785 (1998).

    Google Scholar 

  51. Schneider, M., Tzanou, A., Uran, C. & Vinck, M. Cell-type-specific propagation of visual flicker. Cell Rep. 42, 112492 (2023).

    Google Scholar 

  52. Hu, H. et al. Noninvasive light flicker stimulation promotes optic nerve regeneration by activating microglia and enhancing neural plasticity in zebrafish. Investig. Ophthalmol. Vis. Sci. 65, 3 (2024).

    Google Scholar 

  53. Seydyousefi, M. et al. Exogenous adenosine facilitates neuroprotection and functional recovery following cerebral ischemia in rats. Brain Res. Bull. 153, 250–256 (2019).

    Google Scholar 

  54. Héron, A. et al. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Brain Res. 641, 217–224 (1994).

    Google Scholar 

  55. Von Lubitz, D. K. et al. Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur. J. Pharm. 256, 161–167 (1994).

    Google Scholar 

  56. Agarwal, P. & Agarwal, R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin. Ther. Targets 25, 585–596 (2021).

    Google Scholar 

  57. Matherne, G. P., Linden, J., Byford, A. M., Gauthier, N. S. & Headrick, J. P. Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc. Natl. Acad. Sci. USA 94, 6541–6546 (1997).

    Google Scholar 

  58. Melani, A. et al. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp. Neurol. 233, 193–204 (2012).

    Google Scholar 

  59. Rudolphi, K. A. & Schubert, P. Modulation of neuronal and glial cell function by adenosine and neuroprotection in vascular dementia. Behav. Brain Res. 83, 123–128 (1997).

    Google Scholar 

  60. Coelho, J. E. et al. Hypoxia-induced desensitization and internalization of adenosine A1 receptors in the rat hippocampus. Neuroscience 138, 1195–1203 (2006).

    Google Scholar 

  61. Hamil, N. E., Cock, H. R. & Walker, M. C. Acute down-regulation of adenosine A(1) receptor activity in status epilepticus. Epilepsia 53, 177–188 (2012).

    Google Scholar 

  62. Ho, J. K., Stanford, M. P., Shariati, M. A., Dalal, R. & Liao, Y. J. Optical coherence tomography study of experimental anterior ischemic optic neuropathy and histologic confirmation. Investig. Ophthalmol. Vis. Sci. 54, 5981–5988 (2013).

    Google Scholar 

  63. Guo, Y., Mehrabian, Z. & Bernstein, S. L. The rodent model of nonarteritic anterior ischemic optic neuropathy (rNAION). J. Vis. Exp. 117, 54504 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Science & Technology Initiative STI2030-Major Project Grant No.2021ZD0203400 (to J.-F.C.), Key project of National Natural Science Foundation of China Grant No.82430045 (to J.-F.C.), National Natural Science Foundation of China Grant No.81600991 (to Y.G.), Scientific Research Starting Foundation of Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Grant No. OJQDSP2022007 (to J.-F.C.), Scientific Research Starting Foundation of Wenzhou Medical University Grant No. QTJ12003 (to J.-F.C.).

Author information

Authors and Affiliations

  1. The Molecular Neuropharmacology Laboratory and the Eye-Brain Research Center, State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou, China

    Lingya Su, Ruojun Lu, Lijuan Huang, Manli Jia, Jing Liao, Libin Huang, Youru Wu, Tao Shi, Xianghang He, Yan He, Jiang-Fan Chen & Ying Gao

  2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, China

    Lingya Su, Ruojun Lu, Lijuan Huang, Manli Jia, Jing Liao, Libin Huang, Youru Wu, Tao Shi, Xianghang He, Yan He, Jiang-Fan Chen & Ying Gao

  3. Zhejiang Key Laboratory of Key Technologies for Visual Pathway Reconstruction, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China

    Lingya Su, Ruojun Lu, Lijuan Huang, Manli Jia, Jing Liao, Libin Huang, Youru Wu, Tao Shi, Xianghang He, Yan He, Jiang-Fan Chen & Ying Gao

  4. School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China

    Zuhua Sun

Authors
  1. Lingya Su
    View author publications

    Search author on:PubMed Google Scholar

  2. Ruojun Lu
    View author publications

    Search author on:PubMed Google Scholar

  3. Lijuan Huang
    View author publications

    Search author on:PubMed Google Scholar

  4. Manli Jia
    View author publications

    Search author on:PubMed Google Scholar

  5. Jing Liao
    View author publications

    Search author on:PubMed Google Scholar

  6. Libin Huang
    View author publications

    Search author on:PubMed Google Scholar

  7. Youru Wu
    View author publications

    Search author on:PubMed Google Scholar

  8. Tao Shi
    View author publications

    Search author on:PubMed Google Scholar

  9. Xianghang He
    View author publications

    Search author on:PubMed Google Scholar

  10. Yan He
    View author publications

    Search author on:PubMed Google Scholar

  11. Zuhua Sun
    View author publications

    Search author on:PubMed Google Scholar

  12. Jiang-Fan Chen
    View author publications

    Search author on:PubMed Google Scholar

  13. Ying Gao
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.S., J.C., and Y.G. conceived the study and designed the experiments. J.C. and Y.G. provided financial support and supervised the work. L.S. established the NAION models. L.S. and M.J. performed UPLC experiments. L.S., R.L., L.-J. H., L.-B. H., Y.W., and X.H. performed OCT, VEP and retinal fundus experiments. L.S., R.L., and T.S. performed immunofluorescence staining and microscopy imaging. L.-J.H. and J.L. performed Western blot analyses. L.S., L.-J. H., M.J., J.L., Y.W., Y.H., and Z.S. analyzed the data and prepared the figures. L.S., J.C., and Y.G. drafted the manuscript. All authors contributed to manuscript revision and approved the final version.

Corresponding authors

Correspondence to Jiang-Fan Chen or Ying Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Biology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editors: Alban Latremoliere and Benjamin Bessieres. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review File

Supplementary Information

Description of Additional Supplementary Files

Supplementary Data

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Lu, R., Huang, L. et al. 40 Hz flicker preconditioning protects nonarteritic anterior ischemic optic neuropathy via adenosine signaling. Commun Biol (2026). https://doi.org/10.1038/s42003-026-09591-1

Download citation

  • Received: 14 April 2025

  • Accepted: 13 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s42003-026-09591-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Editorial policies
  • Aims & Scope

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Biology (Commun Biol)

ISSN 2399-3642 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing