Table 1 Literature values for the electron–electron and electron–phonon interaction strengths, βee and γep, of various metals.

From: Parametric dependence of hot electron relaxation timescales on electron-electron and electron-phonon interaction strengths

Metal

λω2〉 (meV2/ħ2)

ΘD (K)

τep (fs)

\(\gamma _{{\mathrm{ep}}}^{ - 1}\) (fs)

\(\beta _{{\mathrm{ee}}}^{ - 1}\) (fs)

τE (fs)

τH(fs)

Li

160

340

12

110

55

230

11

Na

13

158

29

1400

34

1600

7

K

3.4

91

37

5200

20

5500

4

Rb

1.8

56

27

9900

17

1.0 × 104

3

Cs

0.85

38

25

2.1 × 104

14

2.1 × 104

3

Ta

190

240

4.6

93

17

150

 

Mo

240

450

13

74

57

170

 

Fe

280

470

12

63

7.5

92

 

Rh

350

480

10

51

12

89

 

Ni

230

450

13

77

14

120

 

Pd

130

270

8.6

140

8

170

 

Pt

140

240

6.1

100

8

160

 

Cu

57

340

31

310

160

650

30

Ag

23

230

34

790

300

1500

60

Au

15

170

27

1200

300

2100

60

Al

270

430

10

67

40

150

8

Gd

90

200

7

200

28

290

 

Tb

90

200

7

200

18

270

 
  1. We use the electron-electron and electron interaction strengths to calculate τH, the time-scale high energy electronic states remain occupied for, and τE, the time-scale for energy transfer between the electronic subsystem and lattice. The values for the second frequency moment of the Eliashberg function λω2〉 and Debye temperature ΘD are from Allen59, Kittel61, and Papaconstantopoulos et al.62. To highlight the large discrepancy between electron–phonon quasiparticle scattering time τep and time-scales τH and τE, we show \(\tau _{{\mathrm{ep}}} \approx \hbar /\left( {2\pi \lambda k_{\mathrm{B}}T} \right)\) for each metal. However, we emphasize that τep is not an input into our model. The values for \(\beta _{{\mathrm{ee}}}^{ - 1}\) for the alkali metals are predictions from Fermi-liquid theory for a homogenous electron gas32. The values for \(\beta _{{\mathrm{ee}}}^{ - 1}\) of other metals are from two photon photoemission data32, except for Pt. We assume \(\beta _{{\mathrm{ee}}}^{ - 1}\) for Pt is equal to \(\beta _{{\mathrm{ee}}}^{ - 1}\) for Pd.