Fig. 2: Comparison between short and long cells.

a The denser the cells, the faster they move. The average speed increases with density but is non-monotonic in aspect ratio. Wild-type cells are the fastest. Surface density ρ corresponds to the fraction of the viewing area that is covered by cells. Error bars are the standard deviation and are of the same size as the markers. b The mean squared displacement exponent shows that cell trajectories are super-diffusive. However, the exponent of long cells (small cluster (SC) and large cluster (LC) phases) decreases rapidly with density, showing that their super-diffusive property degrades at high densities. Inset shows the log–log plot of the mean square displacement (MSD) versus time interval from which we have fitted each exponent value. This specific MSD corresponds to the hollow red square. Full lines are the best linear fit, providing the slope value reported in the legend. c–f The distribution of densities among a 10 × 10 partition of the viewing area (15 × 15 μm bins) for different (average) surface densities. c, d At small aspect ratios (S phase), the swarm is characterized by a unimodal spatial distribution, with the mode increasing with mean surface density. e, f At large aspect ratios (SC and LC phases), the swarm is segregated into two populations. The proportion of each population changes with the mean surface density.