Table 1 Unified categorization of various Hall effects taking place in canted ferromagnets (FM) and antiferromagnets (AFM) as a function of ferromagnetic/staggered magnetization \({\hat{{\bf{n}}}}_{+/-}\) and structural chirality χ. Here, \({\alpha }_{i}^{{\rm{FM}}}\) and \({\beta }_{ij}^{{\rm{FM}}}\) are expansion coefficients, depending on whether the reference state is FM or AFM. The leading order is linear or quadratic in the Rashba spin-orbit interaction parameter αR.

From: The chiral Hall effect in canted ferromagnets and antiferromagnets

sA ↔ sB

Canted ferromagnet

Canted antiferromagnet

 

Chiral Hall effect

Crystal Hall effect

\({\sigma }_{xy}^{{\rm{odd}}}\)

\({\alpha }_{i}^{{\rm{FM}}}({\hat{{\bf{n}}}}_{+}){\chi }_{i}\)

\({\alpha }_{ij}^{{\rm{AFM}}}({\hat{{\bf{n}}}}_{-}){\chi }_{i}{\chi }_{j}\)

 

\({\sim}\)αR

\({\sim}\)αR

 

Crystal Hall effect

Chiral Hall effect

\({\sigma }_{xy}^{{\rm{even}}}\)

\({\beta }_{ij}^{{\rm{FM}}}({\hat{{\bf{n}}}}_{+}){\chi }_{i}{\chi }_{j}\)

\({\beta }_{i}^{{\rm{AFM}}}({\hat{{\bf{n}}}}_{-}){\chi }_{i}\)

 

\(\sim {\alpha }_{{\rm{R}}}^{2}\)

\(\sim {\alpha }_{{\rm{R}}}^{2}\)