Fig. 6: The performance of dynamic prediction. | Communications Physics

Fig. 6: The performance of dynamic prediction.

From: Discrimination reveals reconstructability of multiplex networks from partial observations

Fig. 6

a The percolation processes of the reconstructed multiplex network corresponding to different fraction of partial observation c = 0.05, 0.25, 0.5, and the real multiplex network (c = 1) for C. elegans multiplex connectome. The x-axis denotes the occupied probability p and the y-axis denotes the size of GMCC (giant mutually connected component) when nodes are randomly removed with probability 1 − p in one layer. b The impact of ratio of average degrees r on the percolation process for r = 0.25 and r = 1. c A random walk process taking place on the reconstructed multiplex network and real multiplex network for London transportation network. The x-axis denotes time t and the y-axis denotes coverage (the fraction of nodes that have been visited before a certain time) of n walkers starting from a set of random chosen nodes. d The impact of r on random walk process for r = 0.25 and r = 1. e The spreading process on the reconstructed temporal network and real temporal network for the social interactions at the SFHH conference. The x-axis denotes the infection rate λ and the y-axis denotes the infected fraction. f The impact of r on spreading process for r = 0.25 and r = 1. The error bar indicates standard deviation in this figure.

Back to article page