Table 1 Parameter settings for the simulations considered in this study: viscosity ratio μd/μc, Weber number \(W{e}_{{{{{{{{\mathcal{L}}}}}}}}}\) with surface tension σ, volume fraction α and integration time to reach statistical convergence \({N}_{{{{{{{{\mathcal{T}}}}}}}}}\).

From: The interaction of droplet dynamics and turbulence cascade

 

μd/μc

\(W{e}_{{{{{{{{\mathcal{L}}}}}}}}}\)

σ

α

\({N}_{{{{{{{{\mathcal{T}}}}}}}}}\)

SP2

136

BE1

1

42.6

0.46

0.03

115

BE2

1

42.6

0.46

0.1

100

V11

0.01

42.6

0.46

0.03

115

V12

0.1

42.6

0.46

0.03

100

V13

10

42.6

0.46

0.03

64

V14

100

42.6

0.46

0.03

60

V21

0.01

42.6

0.46

0.1

115

V22

0.1

42.6

0.46

0.1

100

V23

10

42.6

0.46

0.1

64

V24

100

42.6

0.46

0.1

60

C12

1

42.6

0.46

0.06

100

C13

1

42.6

0.46

0.0775

100

C14

1

42.6

0.46

0.5

100

W11

1

10.6

1.84

0.03

160

W12

1

21.2

0.92

0.03

160

W13

1

106.5

0.184

0.03

100

  1. All simulations are performed with μc = 0.006 and same ABC forcing using N = 512 grid point in each direction. Each case is denoted by a letter indicating the parameter which is varied: V for viscosity ratio, C volume fraction and W Weber number. SP are the single-phase flows and BE are configurations which recur in different parameterizations (base emulsions). For the single-phase case, the energy dissipation rate is ε ≈ 1.4[L2][T−3], resulting in \({\eta }_{sp}={({\nu }^{3}/\left\langle \varepsilon \right\rangle )}^{1/4}\approx 2\delta x\) The dissipation is approximately constant in all conditions.