Fig. 5: Results from linear stability analysis. | Communications Physics

Fig. 5: Results from linear stability analysis.

From: Impact of noise on spinodal dewetting of liquid-liquid films

Fig. 5

a Eigenvalues σs,u(k) of stable and unstable branch with 1/σu = 9400 s at \({k}_{\max }\). b Normalized (but not orthorgonal) eigenvectors χs,u for the stable and unstable branch with χh = χPS + χPMMA. c Initial perturbation \({{{{{{{\boldsymbol{h}}}}}}}}={{{{{{{{\boldsymbol{h}}}}}}}}}^{0}+\delta {{{{{{{{\boldsymbol{\chi }}}}}}}}}_{\alpha }\cos ({k}_{x}x)\cos ({k}_{y}y)\) using an unstable or stable eigenmode for \({h}_{{{{{{{{\rm{PMMA}}}}}}}}}^{0}=111\,{{{{{{{\rm{nm}}}}}}}}\) and \({h}_{{{{{{{{\rm{PS}}}}}}}}}^{0}=7\,{{{{{{{\rm{nm}}}}}}}}\) (amplitude exaggerated) for \(k={k}_{\max }\) using the physical parameters of the polystyrene (PS)-polymethylmethacrylate (PMMA) system. Stable deformations (blue) are positively correlated, whereas in the unstable case (red) the PS film is thinner where the PMMA film is thicker, i.e., negatively correlated.

Back to article page