Fig. 5: Results from linear stability analysis.
From: Impact of noise on spinodal dewetting of liquid-liquid films

a Eigenvalues σs,u(k) of stable and unstable branch with 1/σu = 9400 s at \({k}_{\max }\). b Normalized (but not orthorgonal) eigenvectors χs,u for the stable and unstable branch with χh = χPS + χPMMA. c Initial perturbation \({{{{{{{\boldsymbol{h}}}}}}}}={{{{{{{{\boldsymbol{h}}}}}}}}}^{0}+\delta {{{{{{{{\boldsymbol{\chi }}}}}}}}}_{\alpha }\cos ({k}_{x}x)\cos ({k}_{y}y)\) using an unstable or stable eigenmode for \({h}_{{{{{{{{\rm{PMMA}}}}}}}}}^{0}=111\,{{{{{{{\rm{nm}}}}}}}}\) and \({h}_{{{{{{{{\rm{PS}}}}}}}}}^{0}=7\,{{{{{{{\rm{nm}}}}}}}}\) (amplitude exaggerated) for \(k={k}_{\max }\) using the physical parameters of the polystyrene (PS)-polymethylmethacrylate (PMMA) system. Stable deformations (blue) are positively correlated, whereas in the unstable case (red) the PS film is thinner where the PMMA film is thicker, i.e., negatively correlated.