Fig. 3: Geometric propensity field and its multipoles.

Net propensity field and the net radial component of the propensity field emerging upon excitation of \(\left\vert i\right\rangle =\left\vert {{{{{{{\rm{LUMO}}}}}}}}\right\rangle\) and \(\left\vert j\right\rangle =\left\vert {{{{{{{\rm{LUMO}}}}}}}}+1\right\rangle\) orbitals in propylene oxide. Symmetric \({{{{{{{{\bf{P}}}}}}}}}_{ij}^{+}({{{{{{{\bf{k}}}}}}}})\) [a, Eq. (12)] and asymmetric \({{{{{{{{\bf{Q}}}}}}}}}_{ij}^{-}({{{{{{{\bf{k}}}}}}}})\) [b, Eq. (11)] and \({{{{{{{{\bf{P}}}}}}}}}_{ij}^{-}({{{{{{{\bf{k}}}}}}}})\) [c, Eq. (12)] quadratures for k = 0.2 a.u. Each point on the grey sphere corresponds to a given direction of k and each vector to either \({{{{{{{{\bf{P}}}}}}}}}_{ij}^{+}\), \({{{{{{{{\bf{Q}}}}}}}}}_{ij}^{-}\), or \({{{{{{{{\bf{P}}}}}}}}}_{ij}^{-}\) for that direction of k. d Magnitude of the net value \(| {{{\boldsymbol{\sf{P}}}}}_{ij}^{+}(k)|\) [Eq. (13)], which governs Class I observables, such as enantio-sensitive molecular orientation (PI-MOCD) [Eqs. (18), (19))]. e, f Net values of the radial components \({[{{\mathsf{Q}}}_{\parallel }^{-}(k)]}_{ij}\) [d, Eq. (15)] and \({[{{\mathsf{P}}}_{\parallel }^{-}(k)]}_{ij}\) [f, Eq. (16)], which govern Class II observables, such as the TD-PECD [Eq. (22)].