Fig. 6: Dependence of anisotropy on inertia.
From: Inertial self-propelled particles in anisotropic environments

Anisotropy of the stationary mean velocity v0, persistence length Lp, and long-time diffusion DL for various values of the moment of inertia J evaluated for a 2-fold symmetric motility (left column) and a 3-fold symmetric motility (right column). a, b Stationary mean velocity as a function of the current orientation \({{{{{{{\bf{v}}}}}}}}_{0}(\phi )\cdot \hat{{{{{{{{\bf{n}}}}}}}}}(\phi )\). c, d Persistence length as a function of the initial orientation \({{{{{{{\bf{L}}}}}}}}_{{{{{{{{\rm{p}}}}}}}}}(\phi )\cdot \hat{{{{{{{{\bf{n}}}}}}}}}(\phi )\). e, f Long-time diffusion projected along different directions \({\hat{{{{{{{{\bf{n}}}}}}}}}}^{{{{{{{{\rm{T}}}}}}}}}(\phi )\,{{{{{{{\bf{D}}}}}}}}_{{{{{{{{\rm{L}}}}}}}}}\,\hat{{{{{{{{\bf{n}}}}}}}}}(\phi )\). The moment of inertia is set to J = 0.1 γr/Dr (orange), J = γr/Dr (red), and J = 10 γr/Dr (purple). The mass is fixed at M = γt/Dr.