Fig. 1: Correspondence between the lab and molecular frame. | Communications Physics

Fig. 1: Correspondence between the lab and molecular frame.

From: Applying Bayesian inference and deterministic anisotropy to retrieve the molecular structure Ψ(R)2 distribution from gas-phase diffraction experiments

Fig. 1

Our analysis considers each pairwise distance independently and we define the origin of both the lab and molecular frames by one of the pairwise vectors. For the highlighted NO bond, the nitrogen atom (blue) defines the origin. a The lab frame is defined by the laser polarization \((\hat{{{{{{{{\bf{z}}}}}}}}})\) and propagation direction \((\hat{{{{{{{{\bf{y}}}}}}}}})\). b The molecular frame is defined by the molecule’s rovibronic ground state principal moments of inertia, where the molecular A, B, and C axes define \({\hat{{{{{{{{\bf{z}}}}}}}}}}^{({{{{{{{\rm{mf}}}}}}}})}\), \({\hat{{{{{{{{\bf{y}}}}}}}}}}^{({{{{{{{\rm{mf}}}}}}}})}\), and \({\hat{{{{{{{{\bf{x}}}}}}}}}}^{({{{{{{{\rm{mf}}}}}}}})}\). Here the NO is described by ΔRμν, \({\theta }_{\mu \nu }^{({{\mbox{mf}}})}\), and \({\phi }_{\mu \nu }^{({{\mbox{mf}}})}\) which correspond to its distance, polar angle, and azimuthal angle respectively. One accesses the molecular frame by rotating the lab frame by the Euler angles \({\theta }_{{{{{{{{\rm{I}}}}}}}}}^{({{{{{{{\rm{lf}}}}}}}})}\), \({\phi }_{{{{{{{{\rm{I}}}}}}}}}^{({{{{{{{\rm{lf}}}}}}}})}\), and \({\chi }_{{{{{{{{\rm{I}}}}}}}}}^{({{{{{{{\rm{lf}}}}}}}})}\).

Back to article page