Table 1 Retrieved molecular frame structure parameters for simulated NO2.

From: Applying Bayesian inference and deterministic anisotropy to retrieve the molecular structure Ψ(R)2 distribution from gas-phase diffraction experiments

Θ Parameters

Input

\({P}^{({{{{{{{\mathscr{N}}}}}}}})}\left({{{{{{{\bf{\Theta }}}}}}}}| C\right)\)

\({P}^{(\delta )}\left({{{{{{{\bf{\Theta }}}}}}}}| C\right)\)

  

Θ*

σΘ

Θ*

σΘ

\(\langle {{{{{{{{\rm{NO}}}}}}}}}^{(1)}\rangle\) [Å]

1.35

1.3500

0.0005

1.3509

0.0004

\(\sigma ({{{{{{{{\rm{NO}}}}}}}}}^{(1)})\)[Å]

0.03

0.030

0.004

\(\langle {{{{{{{{\rm{NO}}}}}}}}}^{(2)}\rangle [{{\text{\AA}}}]\)

1.05

1.0500

0.0006

1.0485

0.0005

\(\sigma ({{{{{{{{\rm{NO}}}}}}}}}^{(2)})\)[Å]

0.02

0.020

0.007

\(\left\langle \angle {{{{{{{\rm{ONO}}}}}}}}\right\rangle\)[rad]

2.34

2.340

0.001

2.3401

0.0007

\(\sigma \left(\angle {{{{{{{\rm{ONO}}}}}}}}\right)\)[rad]

0.01

0.01

0.02

  1. Our approximation of Ψ(R)2 (\(P\left({{{{{{{\bf{R}}}}}}}}\right\vert \left.{{{{{{{\bf{\Theta }}}}}}}},C\right)\)) is parameterized by molecular frame distances, angles, and their corresponding widths (Θ parameters). The optimal parameters, denoted as Θ*, correspond to the mode of \(P\left({{{{{{{\bf{\Theta }}}}}}}}| C\right)\). We provide the retrieved Θ* parameters along with their corresponding resolutions for the simulated NO2. The input Θ parameters are those used to simulate the NOClmk(q) coefficients with a signal-to-noise ratio (SNR) of 400. The retrieved Θ* parameters are those found when applying \({P}^{({{{{{{{\mathcal{N}}}}}}}})}\left({{{{{{{\bf{R}}}}}}}}\right\vert \left.{{{{{{{\bf{\Theta }}}}}}}},C\right)\) and \({P}^{(\delta )}\left({{{{{{{\bf{R}}}}}}}}\right\vert \left.{{{{{{{\bf{\Theta }}}}}}}},C\right)\) to the NOClmk(q) simulated using \({P}^{({{{{{{{\mathcal{N}}}}}}}})}\left({{{{{{{\bf{R}}}}}}}}\right\vert \left.{{{{{{{\bf{\Theta }}}}}}}},C\right)\). The σΘ values are the resolution of Θ* and the uncorrelated widths of \({P}^{({{{{{{{\mathcal{N}}}}}}}})}\left({{{{{{{\bf{\Theta }}}}}}}}| C\right)\) and \({P}^{(\delta )}\left({{{{{{{\bf{\Theta }}}}}}}}| C\right)\), respectively.