Fig. 1: Stability of orbital do-vectors vs orbital hybridization λo in Eq. (5). | Communications Physics

Fig. 1: Stability of orbital do-vectors vs orbital hybridization λo in Eq. (5).

From: Pseudospin-triplet pairing in iron-chalcogenide superconductors

Fig. 1

It shows the transition temperature Tc/Tc0 as a function of \({\lambda }_{o}{k}_{F}^{2}/{k}_{B}{T}_{c0}\) for \({{{{{{\bf{g}}}}}}}_{o}({{{{{\bf{k}}}}}})=(2{k}_{x}{k}_{y},0,{k}_{x}^{2}-{k}_{y}^{2})\). Tc0 is Tc at λo = 0. The curves from top to bottom correspond to \({{{{{{\bf{d}}}}}}}_{o}({{{{{\bf{k}}}}}})={k}_{F}^{-2}(2{k}_{x}{k}_{y},0,{k}_{x}^{2}-{k}_{y}^{2})\), \({{{{{{\bf{d}}}}}}}_{o}({{{{{\bf{k}}}}}})=\frac{1}{\sqrt{2}}(1,0,1)\), and \({{{{{{\bf{d}}}}}}}_{o}({{{{{\bf{k}}}}}})={k}_{F}^{-2}({k}_{x}^{2}-{k}_{y}^{2},0,-2{k}_{x}{k}_{y})\), respectively.

Back to article page