Fig. 6: Machine learning protocol for the relative resistance coefficient of the robot (\({C}_{{{{{{{{\rm{r}}}}}}}}}^{{{{{{{{\rm{* }}}}}}}}}\)). | Communications Physics

Fig. 6: Machine learning protocol for the relative resistance coefficient of the robot (\({C}_{{{{{{{{\rm{r}}}}}}}}}^{{{{{{{{\rm{* }}}}}}}}}\)).

From: Drag force on a microrobot propelled through blood

Fig. 6

a Schematic flow chart of the ML protocol used to predict \({C}_{{{{{{{{\rm{r}}}}}}}}}^{{{{{{{{\rm{* }}}}}}}}}\). The zoomed view shows the cross-validation employed to determine the hyperparameters. b Simulated and predicted \({C}_{{{{{{{{\rm{r}}}}}}}}}^{{{{{{{{\rm{* }}}}}}}}}\). c Importance ranking of features affecting \({C}_{{{{{{{{\rm{r}}}}}}}}}^{{{{{{{{\rm{* }}}}}}}}}\) by summing the number of times each feature is used as a split node across all trees.

Back to article page