Table 1 Work and heat fluctuations for each type of process

From: Universal relations and bounds for fluctuations in quasistatic small heat engines

Process

\(\left\langle \Delta {W}_{i\to i+1}^{2}\right\rangle\)

\(\langle \Delta {Q}_{i\to i+1}^{2}\rangle\)

(1) Isothermal

0

\(\left\langle \Delta {E}_{i}^{2}\right\rangle +\left\langle \Delta {E}_{i+1}^{2}\right\rangle\)

(2) Adiabatic

\({\left[1-({T}_{i+1}/{T}_{i})\right]}^{2}\left\langle \Delta {E}_{i}^{2}\right\rangle ={\left[({T}_{i}/{T}_{i+1})-1\right]}^{2}\left\langle \Delta {E}_{i+1}^{2}\right\rangle\)

0

(3) Isochoric

0

\(\left\langle \Delta {E}_{i}^{2}\right\rangle +\left\langle \Delta {E}_{i+1}^{2}\right\rangle\)

(4) Isobaric

0

\(\left\langle \Delta {E}_{i}^{2}\right\rangle +\left\langle \Delta {E}_{i+1}^{2}\right\rangle\)

  1. Work fluctuation \(\left\langle \Delta {W}_{i\to i+1}^{2}\right\rangle\) and heat fluctuation \(\langle \Delta {Q}_{i\to i+1}^{2}\rangle\) for different thermodynamic processes from point i to i + 1. \(\left\langle \Delta {E}_{i}^{2}\right\rangle\) is the variance of the internal energy Ei of the working substance for the canonical distribution at point i.