Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
2D transverse laser cooling of a hexapole focused beam of cold BaF molecules
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 12 January 2026

2D transverse laser cooling of a hexapole focused beam of cold BaF molecules

  • J. W. F. van Hofslot  ORCID: orcid.org/0000-0001-7596-04341,2,
  • I. E. Thompson1,
  • A. Touwen1,2,3,
  • N. Balasubramanian1,2,
  • R. Bause1,2 nAff5,
  • H. L. Bethlem  ORCID: orcid.org/0000-0003-4575-85121,3,
  • A. Borschevsky1,2,
  • T. H. Fikkers1,2,
  • S. Hoekstra  ORCID: orcid.org/0000-0002-9571-45101,2,
  • S. A. Jones1,2,
  • J. E. J. Levenga  ORCID: orcid.org/0009-0007-0809-13481,2,
  • M. C. Mooij  ORCID: orcid.org/0000-0002-9577-49512,3,
  • H. Mulder  ORCID: orcid.org/0009-0005-1275-89481,2,
  • B. A. Nijman  ORCID: orcid.org/0009-0008-8542-12561,2,
  • E. H. Prinsen  ORCID: orcid.org/0009-0008-9660-71521,2,
  • B. J. Schellenberg  ORCID: orcid.org/0009-0003-3069-88681,2,
  • L. van Sloten1,2,
  • R. G. E. Timmermans1,2,
  • W. Ubachs  ORCID: orcid.org/0000-0001-7840-37563,
  • J. de Vries2,4 &
  • L. Willmann1,2
  • On behalf of the NL-eEDM collaboration

Communications Physics , Article number:  (2026) Cite this article

  • 1052 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Atomic and molecular interactions with photons
  • Matter waves and particle beams
  • Quantum metrology
  • Ultracold gases

Abstract

Laser cooling of molecules is a powerful technique for producing cold, slow beams for precision measurements and quantum control, yet its implementation remains challenging due to molecular complexity. Here, we combine a cryogenic buffer gas beam, an electrostatic hexapole lens, and 2D transverse Doppler laser cooling to produce a bright beam of barium monofluoride (138Ba19F) molecules. We study both numerically and experimentally the laser cooling effect as a function of laser detuning, laser power, laser alignment, and interaction time. We find a scattering rate of 6.1(1.4) × 105 s−1 on the laser cooling transition (14% of the expected maximum) and identify suboptimal dark Zeeman state remixing, suboptimal laser sideband powers and detunings, and a lack of vibrational repump laser intensity as possible causes of such a low rate. Using 3 tuneable lasers with appropriate sidebands and detuning, each molecule scatters approximately 400 photons during 2D laser cooling, limited by the interaction time and scattering rate. Leaks to dark states are less than 10%. Finally, we use the experimental results to benchmark the trajectory simulations to predict the achievable flux 3.5 m downstream for a planned eEDM experiment.

Similar content being viewed by others

Optical pumping and laser slowing of a heavy molecule

Article Open access 02 December 2025

Laser-induced forced evaporative cooling of molecular anions below 4 K

Article 15 June 2023

Laser cooling for quantum gases

Article 18 November 2021

Data availability

Data are available from the corresponding author upon request.

Code availability

The code we used for analyzing the experimental results and calculating the molecular trajectories is available from the corresponding author upon request.

References

  1. Ye, J. & Zoller, P. Essay: quantum sensing with atomic, molecular, and optical platforms for fundamental physics. Phys. Rev. Lett. 132, 190001 (2024).

    Google Scholar 

  2. Langen, T., Valtolina, G., Wang, D. & Ye, J. Quantum state manipulation and cooling of ultracold molecules. Nat. Phys. 20, 702–712 (2024).

    Google Scholar 

  3. Cheuk, L. W. et al. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125, 043401 (2020).

    Google Scholar 

  4. Blackmore, J. A. et al. Ultracold molecules for quantum simulation: rotational coherences in CaF and RbCs. Quantum Sci. Technol. 4, 014010 (2018).

    Google Scholar 

  5. White, A. D. et al. Slow molecular beams from a cryogenic buffer gas source. Phys. Rev. Res. 6, 043232 (2024).

    Google Scholar 

  6. DeMille, D., Hutzler, N. R., Rey, A. M. & Zelevinsky, T. Quantum sensing and metrology for fundamental physics with molecules. Nat. Phys. 20, 741–749 (2024).

    Google Scholar 

  7. Roussy, T. S. et al. An improved bound on the electron’s electric dipole moment. Science 381, 46–50 (2023).

    Google Scholar 

  8. Cesarotti, C., Lu, Q., Nakai, Y., Parikh, A. & Reece, M. Interpreting the electron EDM constraint. J. High. Energy Phys. 2019, 59 (2019).

    Google Scholar 

  9. Athanasakis-Kaklamanakis, M. et al. Community input to the European strategy on particle physics: Searches for permanent electric dipole moments. Preprint at https://doi.org/10.48550/arXiv.2505.22281 (2025).

  10. Hiramoto, A. et al. SiPM module for the ACME III electron EDM search. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 1045, 167513 (2023).

    Google Scholar 

  11. Vutha, A., Horbatsch, M. & Hessels, E. Oriented polar molecules in a solid inert-gas matrix: A proposed method for measuring the electric dipole moment of the electron. Atoms 6, 3 (2018).

    Google Scholar 

  12. Fitch, N. J., Lim, J., Hinds, E. A., Sauer, B. E. & Tarbutt, M. R. Methods for measuring the electron’s electric dipole moment using ultracold YbF molecules. Quantum Sci. Technol. 6, 014006 (2021).

    Google Scholar 

  13. Aggarwal, P. et al. Measuring the electric dipole moment of the electron in BaF. Eur. Phys. J. D. 72, 197 (2018).

    Google Scholar 

  14. Aggarwal, P. et al. Deceleration and trapping of SrF molecules. Phys. Rev. Lett. 127, 173201 (2021).

    Google Scholar 

  15. Bause, R. et al. Prospects for measuring the electron’s electric dipole moment with polyatomic molecules in an optical lattice. Phys. Rev. A 111, 062815 (2025).

    Google Scholar 

  16. Arrowsmith-Kron, G. et al. Opportunities for fundamental physics research with radioactive molecules. Rep. Prog. Phys. 87, 084301 (2024).

    Google Scholar 

  17. Kozyryev, I. & Hutzler, N. R. Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett. 119, 133002 (2017).

    Google Scholar 

  18. Zhou, Y. et al. Second-scale coherence measured at the quantum projection noise limit with hundreds of molecular ions. Phys. Rev. Lett. 124, 053201 (2020).

    Google Scholar 

  19. Andreev, V. et al. Improved limit on the electric dipole moment of the electron. Nature 562, 355–360 (2018).

    Google Scholar 

  20. Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012).

    Google Scholar 

  21. Truppe, S. et al. A buffer gas beam source for short, intense and slow molecular pulses. J. Mod. Opt. 65, 648–656 (2018).

    Google Scholar 

  22. Wu, X. et al. Electrostatic focusing of cold and heavy molecules for the ACME electron EDM search. N. J. Phys. 24, 073043 (2022).

    Google Scholar 

  23. Touwen, A. et al. Manipulating a beam of barium fluoride molecules using an electrostatic hexapole. N. J. Phys. 26, 073054 (2024).

    Google Scholar 

  24. Alauze, X. et al. An ultracold molecular beam for testing fundamental physics. Quantum Sci. Technol. 6, 044005 (2021).

    Google Scholar 

  25. Kozyryev, I. et al. Sisyphus laser cooling of a polyatomic molecule. Phys. Rev. Lett. 118, 173201 (2017).

    Google Scholar 

  26. Augenbraun, B. L. et al. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. N. J. Phys. 22, 022003 (2020).

    Google Scholar 

  27. Fitch, N. & Tarbutt, M. Laser-cooled molecules. Adv. At. Mol. Opt. Phys. 70, 157–262 (2021).

  28. Hummon, M. T. et al. 2d magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013).

    Google Scholar 

  29. Zeng, Z., Deng, S., Yang, S. & Yan, B. Three-dimensional magneto-optical trapping of barium monofluoride. Phys. Rev. Lett. 133, 143404 (2024).

    Google Scholar 

  30. Langin, T. K. & DeMille, D. Toward improved loading, cooling, and trapping of molecules in magneto-optical traps. N. J. Phys. 25, 043005 (2023).

    Google Scholar 

  31. Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010).

    Google Scholar 

  32. Burau, J. J., Aggarwal, P., Mehling, K. & Ye, J. Blue-detuned magneto-optical trap of molecules. Phys. Rev. Lett. 130, 193401 (2023).

    Google Scholar 

  33. Jorapur, V., Langin, T. K., Wang, Q., Zheng, G. & DeMille, D. High density loading and collisional loss of laser-cooled molecules in an optical trap. Phys. Rev. Lett. 132, 163403 (2024).

    Google Scholar 

  34. Vilas, N. B. et al. Magneto-optical trapping and sub-Doppler cooling of a polyatomic molecule. Nature 606, 70–74 (2022).

    Google Scholar 

  35. Lasner, Z. D. et al. Magneto-optical trapping of a heavy polyatomic molecule for precision measurement. Phys. Rev. Lett. 134, 083401 (2025).

    Google Scholar 

  36. Mitra, D. et al. Direct laser cooling of a symmetric top molecule. Science 369, 1366–1369 (2020).

    Google Scholar 

  37. Aggarwal, P. et al. Lifetime measurements of the a2Π1/2 and a2Π3/2 states in BaF. Phys. Rev. A 100, 052503 (2019).

    Google Scholar 

  38. Rockenhäuser, M., Kogel, F., Garg, T., Morales-Ramírez, S. A. & Langen, T. Laser cooling of barium monofluoride molecules using synthesized optical spectra. Phys. Rev. Res. 6, 043161 (2024).

    Google Scholar 

  39. Hao, Y. et al. High accuracy theoretical investigations of CaF, SrF, and BaF and implications for laser-cooling. J. Chem. Phys. 151, 034302 (2019).

    Google Scholar 

  40. Xia, M. et al. Destabilization of dark states in MgF molecules. Phys. Rev. A 103, 013321 (2021).

    Google Scholar 

  41. Kogel, F., Garg, T., Rockenhäuser, M., Morales-Ramírez, S. A. & Langen, T. Molecular laser cooling using serrodynes: implementation, characterization and prospects. N. J. Phys. 27, 055001 (2025).

    Google Scholar 

  42. Mooij, M. C. et al. Influence of source parameters on the longitudinal phase-space distribution of a pulsed cryogenic beam of barium fluoride molecules. N. J. Phys. 26, 053009 (2024).

    Google Scholar 

  43. Truppe, S. et al. Molecules cooled below the doppler limit. Nat. Phys. 13, 1173–1176 (2017).

    Google Scholar 

  44. Chen, T., Bu, W. & Yan, B. Radiative deflection of a BaF molecular beam via optical cycling. Phys. Rev. A 96, 053401 (2017).

    Google Scholar 

  45. Boeschoten, A. et al. Spin-precession method for sensitive electric dipole moment searches. Phys. Rev. A 110, L010801 (2024).

    Google Scholar 

  46. Aggarwal, P. et al. A supersonic laser ablation beam source with narrow velocity spreads. Rev. Sci. Instrum. 92, 033202 (2021).

    Google Scholar 

  47. Wright, S. C. et al. Cryogenic buffer gas beams of AlF, CaF, MgF, YbF, al, ca, yb and NO - a comparison. Mol. Phys. 121, e2146541 (2023).

    Google Scholar 

  48. Berkeland, D. J. & Boshier, M. G. Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002).

    Google Scholar 

  49. Eckel, S., Barker, D. S., Norrgard, E. B. & Scherschligt, J. PyLCP: a Python package for computing laser cooling physics. Comput. Phys. Commun. 270, 108166 (2022).

    Google Scholar 

  50. Clausen, G. et al. Combining laser cooling and Zeeman deceleration for precision spectroscopy in supersonic beams. Phys. Rev. A 110, 042802 (2024).

    Google Scholar 

  51. Truppe, S. et al. An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing. N. J. Phys. 19, 022001 (2017).

    Google Scholar 

  52. Rockenhäuser, M., Kogel, F., Pultinevicius, E. & Langen, T. Absorption spectroscopy for laser cooling and high-fidelity detection of barium monofluoride molecules. Phys. Rev. A 108, 062812 (2023).

Download references

Acknowledgements

The NL-eEDM collaboration receives funding (eEDM-166, XL21.074 and VI.C.212.016) from the Dutch Research Council (NWO). We acknowledge the technical support from L. Huisman and O. Böll.

Author information

Author notes
  1. R. Bause

    Present address: Menlo Systems GmbH, Martinsried, Germany

Authors and Affiliations

  1. Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, The Netherlands

    J. W. F. van Hofslot, I. E. Thompson, A. Touwen, N. Balasubramanian, R. Bause, H. L. Bethlem, A. Borschevsky, T. H. Fikkers, S. Hoekstra, S. A. Jones, J. E. J. Levenga, H. Mulder, B. A. Nijman, E. H. Prinsen, B. J. Schellenberg, L. van Sloten, R. G. E. Timmermans, L. Willmann, J. W. F. van Hofslot & L. van Sloten

  2. Nikhef, National Institute for Subatomic Physics, Amsterdam, The Netherlands

    J. W. F. van Hofslot, A. Touwen, N. Balasubramanian, R. Bause, A. Borschevsky, T. H. Fikkers, S. Hoekstra, S. A. Jones, J. E. J. Levenga, M. C. Mooij, H. Mulder, B. A. Nijman, E. H. Prinsen, B. J. Schellenberg, L. van Sloten, R. G. E. Timmermans, J. de Vries, L. Willmann, J. W. F. van Hofslot, L. van Sloten & J. de Vries

  3. Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

    A. Touwen, H. L. Bethlem, M. C. Mooij & W. Ubachs

  4. Institute of Physics and Delta Institute for Theoretical Physics, University of Amsterdam, Amsterdam, The Netherlands

    J. de Vries & J. de Vries

Authors
  1. J. W. F. van Hofslot
    View author publications

    Search author on:PubMed Google Scholar

  2. I. E. Thompson
    View author publications

    Search author on:PubMed Google Scholar

  3. A. Touwen
    View author publications

    Search author on:PubMed Google Scholar

  4. N. Balasubramanian
    View author publications

    Search author on:PubMed Google Scholar

  5. R. Bause
    View author publications

    Search author on:PubMed Google Scholar

  6. H. L. Bethlem
    View author publications

    Search author on:PubMed Google Scholar

  7. A. Borschevsky
    View author publications

    Search author on:PubMed Google Scholar

  8. T. H. Fikkers
    View author publications

    Search author on:PubMed Google Scholar

  9. S. Hoekstra
    View author publications

    Search author on:PubMed Google Scholar

  10. S. A. Jones
    View author publications

    Search author on:PubMed Google Scholar

  11. J. E. J. Levenga
    View author publications

    Search author on:PubMed Google Scholar

  12. M. C. Mooij
    View author publications

    Search author on:PubMed Google Scholar

  13. H. Mulder
    View author publications

    Search author on:PubMed Google Scholar

  14. B. A. Nijman
    View author publications

    Search author on:PubMed Google Scholar

  15. E. H. Prinsen
    View author publications

    Search author on:PubMed Google Scholar

  16. B. J. Schellenberg
    View author publications

    Search author on:PubMed Google Scholar

  17. L. van Sloten
    View author publications

    Search author on:PubMed Google Scholar

  18. R. G. E. Timmermans
    View author publications

    Search author on:PubMed Google Scholar

  19. W. Ubachs
    View author publications

    Search author on:PubMed Google Scholar

  20. J. de Vries
    View author publications

    Search author on:PubMed Google Scholar

  21. L. Willmann
    View author publications

    Search author on:PubMed Google Scholar

Consortia

On behalf of the NL-eEDM collaboration

  • J. W. F. van Hofslot
  • , I. E. Thompson
  • , A. Touwen
  • , N. Balasubramanian
  • , R. Bause
  • , H. L. Bethlem
  • , A. Borschevsky
  • , T. H. Fikkers
  • , S. Hoekstra
  • , S. A. Jones
  • , J. E. J. Levenga
  • , M. C. Mooij
  • , H. Mulder
  • , B. A. Nijman
  • , E. H. Prinsen
  • , B. J. Schellenberg
  • , L. van Sloten
  • , R. G. E. Timmermans
  • , W. Ubachs
  • , J. de Vries
  •  & L. Willmann

Contributions

S.H., H.B., A.B., R.G.E.T., W.U., and L.W. conceived the experiment. J.H. developed the laser system, performed the experiments, analyzed the data, and drafted the first version of the manuscript. J.H., A.T., R.B., and T.F. developed the vacuum system. I.T. and J.H. performed the trajectory simulations using an adapted version of a code originally written by A.T. and H.B. A.T. helped with an early version of the experiment and data analysis. S.H. and H.B. supervised the project. J.H., I.T., A.T., N.B., R.B., H.B., A.B., T.F., S.H., S.J., J.L., M.M., H.M., B.N., E.P., B.S., L.S., R.T., W.U., J.V., and L.W. discussed and approved the final manuscript.

Corresponding author

Correspondence to S. Hoekstra.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Ben Sauer, Chi Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Hofslot, J.W.F., Thompson, I.E., Touwen, A. et al. 2D transverse laser cooling of a hexapole focused beam of cold BaF molecules. Commun Phys (2026). https://doi.org/10.1038/s42005-025-02470-x

Download citation

  • Received: 09 July 2025

  • Accepted: 15 December 2025

  • Published: 12 January 2026

  • DOI: https://doi.org/10.1038/s42005-025-02470-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing