Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Nonvolatile ferroelectric switching of room-temperature bipolar magnetic semiconductors for energy-efficient spintronics
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Nonvolatile ferroelectric switching of room-temperature bipolar magnetic semiconductors for energy-efficient spintronics

  • Jia-Wen Li  ORCID: orcid.org/0009-0003-7265-46871,2,
  • Gang Su  ORCID: orcid.org/0000-0002-8149-43422,3,4,5 &
  • Bo Gu  ORCID: orcid.org/0000-0003-2211-41162,5 

Communications Physics , Article number:  (2026) Cite this article

  • 1492 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ferroelectrics and multiferroics
  • Magnetic properties and materials
  • Spintronics
  • Theory and computation

Abstract

Room-temperature magnetic semiconductors are crucial for next-generation spintronics, yet remain hindered by low Curie temperatures and volatile control mechanisms. Using density functional theory, we report Cr2NiSe4, a bipolar magnetic semiconductor (BMS) formed by Ni intercalation in bilayer CrSe2, with a Curie temperature of 495 K and a 0.40 eV band gap. We demonstrate nonvolatile control over carrier spin polarization in Al2Se3 heterostructures via ferroelectric switching: reversing the polarization of monolayer Al2Se3 induces a BMS-to-half-metal transition, whereas bilayer Al2Se3 enables half-metallic states with fully opposite spin polarization. This nonvolatile mechanism obviates the need for a continuous electric field and lowers energy consumption through interfacial charge transfer driven by ferroelectric band alignment. We propose a multiferroic memory device where ferroelectric polarization controls writing and spin-dependent conductance enables reading, enabling low-power, room-temperature operation. Our work establishes a feasible pathway for developing electrically tunable spintronics beyond the limits of Moore’s Law.

Similar content being viewed by others

Nonvolatile electrical control of spin polarization in the 2D bipolar magnetic semiconductor VSeF

Article Open access 03 April 2023

Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices

Article Open access 31 May 2021

Sliding multiferrocity in van der Waals layered CrI2

Article Open access 18 December 2025

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes associated with this manuscript are available from the corresponding author on reasonable request.

References

  1. Shalf, J. The future of computing beyond Moore’s law. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 378, 20190061 (2020).

    Google Scholar 

  2. Hu, J., Chen, L. & Nan, C. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28, 15–39 (2015).

    Google Scholar 

  3. Wang, J., Chen, A., Li, P. & Zhang, S. Magnetoelectric memory based on ferromagnetic/ferroelectric multiferroic heterostructure. Materials 14, 4623 (2021).

    Google Scholar 

  4. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Google Scholar 

  5. Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010).

    Google Scholar 

  6. Sato, K. et al. First-principles theory of dilute magnetic semiconductors. Rev. Mod. Phys. 82, 1633–1690 (2010).

    Google Scholar 

  7. Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III, Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    Google Scholar 

  8. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Google Scholar 

  9. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Google Scholar 

  10. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–946 (2000).

    Google Scholar 

  11. Mitra, C. et al. p-n diode with hole- and electron-doped lanthanum manganites. Appl. Phys. Lett. 79, 2408–2410 (2001).

    Google Scholar 

  12. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Google Scholar 

  13. Li, X. et al. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 19, 5133–5139 (2019).

    Google Scholar 

  14. Gorbenko, O. et al. Synthetic routes to colossal magnetoresistance manganites thin films containing unstable or highly volatile metal oxides. Thin Solid Films 515, 6395–6401 (2007).

    Google Scholar 

  15. Goel, S. et al. Room-temperature spin injection from a ferromagnetic semiconductor. Sci. Rep. 13, 2181 (2023).

    Google Scholar 

  16. Cinchetti, M. et al. Determination of spin injection and transport in a ferromagnet/organic semiconductor heterojunction by two-photon photoemission. Nat. Mater. 8, 115–119 (2008).

    Google Scholar 

  17. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Google Scholar 

  18. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Google Scholar 

  19. Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1307–1307 (1966).

    Google Scholar 

  20. Chu, J. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano. Lett. 19, 2154–2161 (2019).

    Google Scholar 

  21. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano. Lett. 19, 3993–3998 (2019).

    Google Scholar 

  22. Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano. Lett. 19, 3138–3142 (2019).

    Google Scholar 

  23. Achinuq, B. et al. Covalent mixing in the 2D ferromagnet CrSiTe3 evidenced by magnetic X-Ray circular dichroism. Phys. Status Solidi 16, 2100566 (2021).

    Google Scholar 

  24. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano. Lett. 21, 3511–3517 (2021).

    Google Scholar 

  25. Zhang, X. et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun. 12, 2492 (2021).

    Google Scholar 

  26. Xian, J.-J. et al. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2. Nat. Commun. 13, 257 (2022).

    Google Scholar 

  27. Wang, D. et al. Strain- and electron doping-induced in-plane spin orientation at room temperature in single-layer CrTe2. ACS Appl. Mater. Interfaces 16, 28791 (2024).

  28. Chua, R. et al. Room temperature ferromagnetism of monolayer chromium telluride with perpendicular magnetic anisotropy. Adv. Mater. 33, 2103360 (2021).

    Google Scholar 

  29. Li, B. et al. Air-stable ultrathin Cr3Te4 nanosheets with thickness-dependent magnetic biskyrmions. Mater. Today 57, 66–74 (2022).

    Google Scholar 

  30. Zhang, Y. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 31, 1900056 (2019).

    Google Scholar 

  31. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Google Scholar 

  32. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Google Scholar 

  33. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    Google Scholar 

  34. Zhang, G. et al. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun. 13, 5067 (2022).

    Google Scholar 

  35. Chen, Z., Yang, Y., Ying, T. & Guo, J.-G. High-Tc ferromagnetic semiconductor in thinned 3D Ising ferromagnetic metal Fe3GaTe2. Nano Lett. 24, 993–1000 (2024).

    Google Scholar 

  36. O’hara, D. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano. Lett. 18, 3125–3131 (2018).

    Google Scholar 

  37. Xiao, H. et al. Van der Waals epitaxial growth of 2D layered room-temperature ferromagnetic CrS2. Adv. Mater. Interfaces 9, 2201353 (2022).

    Google Scholar 

  38. Yao, Y. et al. Synthesis of air-stable 1T-CrS2 thin films and their application in high-performance floating-gate memory. J. Mater. Chem. C. 12, 11513–11520 (2024).

    Google Scholar 

  39. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    Google Scholar 

  40. Meng, L. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 12, 94–99 (2021).

    Google Scholar 

  41. Huang, C. et al. Ultra-high-temperature ferromagnetism in intrinsic tetrahedral semiconductors. JACS 141, 12413–12418 (2019).

    Google Scholar 

  42. Jiang, Z., Wang, P., Xing, J., Jiang, X. & Zhao, J. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces 10, 39032–39039 (2018).

    Google Scholar 

  43. Huang, C. et al. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. JACS 140, 11519–11525 (2018).

    Google Scholar 

  44. Li, J.-W., Zhang, Z., You, J.-Y., Gu, B. & Su, G. Two-dimensional Heisenberg model with material-dependent superexchange interactions. Phys. Rev. B 107, 224411 (2023).

    Google Scholar 

  45. Li, J.-W., Su, G. & Gu, B. High temperature ferrimagnetic semiconductors by spin-dependent doping in high temperature antiferromagnets. npj Comput. Mater. 10, 205 (2024).

    Google Scholar 

  46. Li, J.-W., Su, G. & Gu, B. Possible room-temperature ferromagnetic semiconductor in monolayer MnSe2 through a metal-semiconductor transition. Phys. Rev. B 109, 134436 (2024).

    Google Scholar 

  47. Li, X., Li, J.-W., You, J.-Y., Su, G. & Gu, B. High curie temperature in diluted magnetic semiconductors (B, Mn) X (X = N, P, As, Sb). Phys. Rev. B 111, 184425 (2025).

    Google Scholar 

  48. Li, J.-W., Su, G. & Gu, B. Ferromagnetic semiconductor nanotubes with room Curie temperatures. npj Comput. Mater. 11, 292 (2025).

    Google Scholar 

  49. Jia-Wen Li, S. G. & Gu, B. Room-temperature ferromagnetism via superexchange in semiconductor (Cr4/6, Mo2/6)3Te6. Chin. Phys. Lett. 42, 090703 (2025).

    Google Scholar 

  50. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Google Scholar 

  51. Zhao, F., Cao, T. & Louie, S. G. Topological phases in graphene nanoribbons tuned by electric fields. Phys. Rev. Lett. 127, 166401 (2021).

    Google Scholar 

  52. Hao, Q. et al. Phase identification and strong second harmonic generation in pure ϵ-InSe and its alloys. Nano Lett. 19, 2634–2640 (2019).

    Google Scholar 

  53. Fang, J. et al. Large unsaturated magnetoresistance of 2D magnetic semiconductor Fe-SnS2 homojunction. J. Semicond. 43, 092501 (2022).

    Google Scholar 

  54. Zhao, D. et al. Magnetic tuning in a novel half-metallic Ir2TeI2 monolayer. J. Semicond. 43, 052001 (2022).

    Google Scholar 

  55. Huang, S. et al. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat. Commun. 10, 94–99 (2019).

    Google Scholar 

  56. Li, Z. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 11, 94–99 (2020).

    Google Scholar 

  57. Pathirage, V. et al. 2D materials by Design: Intercalation of Cr or Mn between two VSe2 van der Waals Layers. Nano Lett. 23, 9579–9586 (2023).

  58. Zhou, J. et al. Layered intercalation materials. Adv. Mater. 33, 2004557 (2021).

    Google Scholar 

  59. Rajapakse, M. et al. Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2d materials. npj 2D Mater. Appl. 5, 30 (2021).

    Google Scholar 

  60. Zhao, D. et al. Copper intercalation induces amorphization of 2D Cu/WO3 for room-temperature ferromagnetism. Angew. Chem. Int. Ed. 63, e202412811 (2024).

    Google Scholar 

  61. Zhou, J. et al. Heterodimensional superlattice with in-plane anomalous Hall effect. Nature 609, 46–51 (2022).

    Google Scholar 

  62. Peng, J. et al. Even-odd-layer-dependent ferromagnetism in 2D non-van-der-Waals CrCuSe2. Adv. Mater. 35, 2209365 (2023).

    Google Scholar 

  63. Zhang, J., Sun, J., Li, Y., Shi, F. & Cui, Y. Electrochemical control of copper intercalation into nanoscale Bi2Se3. Nano Lett. 17, 1741–1747 (2017).

    Google Scholar 

  64. Liu, X.-C. et al. Spontaneous self-intercalation of copper atoms into transition metal dichalcogenides. Sci. Adv. 6, eaay4092 (2020).

    Google Scholar 

  65. Wang, Z. et al. Room-temperature CrI3 magnets through lithiation. ACS Nano 18, 23058–23066 (2024).

    Google Scholar 

  66. Wang, Y. et al. Layer-number-independent two-dimensional ferromagnetism in Cr3Te4. Nano Lett. 22, 9964–9971 (2022).

    Google Scholar 

  67. Wen, Y. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 20, 3130–3139 (2020).

    Google Scholar 

  68. Chen, C. et al. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater. 34, 2107512 (2021).

    Google Scholar 

  69. Tang, B. et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat. Electron. 5, 224–232 (2022).

    Google Scholar 

  70. Liu, J. et al. Magnetic skyrmionic bubbles at room temperature and sign reversal of the topological Hall effect in a layered ferromagnet Cr0.87Te. ACS Nano 16, 13911–13918 (2022).

    Google Scholar 

  71. Tan, C. et al. Room-temperature magnetic phase transition in an electrically tuned van der Waals ferromagnet. Phys. Rev. Lett. 131, 166703 (2023).

    Google Scholar 

  72. Li, X., Wu, X., Li, Z., Yang, J. & Hou, J. G. Bipolar magnetic semiconductors: a new class of spintronics materials. Nanoscale 4, 5680 (2012).

    Google Scholar 

  73. Li, J., Li, X. & Yang, J. A review of bipolar magnetic semiconductors from theoretical aspects. Fundam. Res. 2, 511–521 (2022).

    Google Scholar 

  74. Ding, G., Hu, Y., Li, D., Wang, X. & Qin, D. Spin seebeck effect in bipolar magnetic semiconductor: a case of magnetic MoS2 nanotube. J. Adv. Res. 24, 391–396 (2020).

    Google Scholar 

  75. Jung, S. W. et al. Black phosphorus as a bipolar pseudospin semiconductor. Nat. Mater. 19, 277–281 (2020).

    Google Scholar 

  76. Li, X. & Yang, J. Bipolar magnetic materials for electrical manipulation of spin-polarization orientation. Phys. Chem. Chem. Phys. 15, 15793 (2013).

    Google Scholar 

  77. Guo, T. et al. Bipolar magnetic semiconductor and doping controllable spin transport property in 2D CoI2/MnBr2 heterostructure. Appl. Phys. Lett. 124, 062404 (2024).

    Google Scholar 

  78. Li, X. & Yang, J. Realizing two-dimensional magnetic semiconductors with enhanced curie temperature by antiaromatic ring based organometallic frameworks. JACS 141, 109–112 (2018).

    Google Scholar 

  79. Cheng, H. et al. Robust two-dimensional bipolar magnetic semiconductors by defect engineering. J. Mater. Chem. C. 6, 8435–8443 (2018).

    Google Scholar 

  80. Sheng, H. et al. Magnetic and phonon transport properties of two-dimensional room-temperature ferromagnet VSe2. J. Mater. Sci. 56, 15844–15858 (2021).

    Google Scholar 

  81. Liu, G. & Ke, S.-H. Electronic and transport engineering of A-type antiferromagnets with ferroelectric sandwich structure: Toward multistate nonvolatile memory applications. Nano Lett. 24, 10776–10782 (2024).

    Google Scholar 

  82. Lv, H., Niu, Y., Wu, X. & Yang, J. Electric-field tunable magnetism in van der Waals bilayers with A-type antiferromagnetic order: Unipolar versus bipolar magnetic semiconductor. Nano Lett. 21, 7050–7055 (2021).

    Google Scholar 

  83. Wang, Y. et al. Switchable half-metallicity in A-type antiferromagnetic NiI2 bilayer coupled with ferroelectric In2Se3. npj Comput. Mater. 8, 218 (2022).

    Google Scholar 

  84. Wang, H., Feng, Q., Li, X. & Yang, J. High-throughput computational screening for bipolar magnetic semiconductors. Research 2022, 9857631 (2022).

    Google Scholar 

  85. Li, Y. et al. Nonvolatile electrical control of spin polarization in the 2D bipolar magnetic semiconductor VSeF. npj Comput. Mater. 9, 50 (2023).

    Google Scholar 

  86. Zhang, L., Liu, Y., Wu, M. & Gao, G. Electric-field- and stacking-tuned antiferromagnetic FeClF bilayer: the coexistence of bipolar magnetic semiconductor and anomalous valley Hall effect. Adv. Funct. Mater. 35, 2417857 (2024).

    Google Scholar 

  87. Zhao, Y., Zhang, J., Yuan, S. & Chen, Z. Nonvolatile electrical control and heterointerface-induced half-metallicity of 2D ferromagnets. Adv. Funct. Mater. 29, 1901420 (2019).

    Google Scholar 

  88. Ding, W. et al. Prediction of intrinsic two-dimensional ferroelectrics in in2se3 and other III2-VI3 van der Waals materials. Nat. Commun. 8, 14956 (2017).

    Google Scholar 

  89. Yuan, Z. et al. Tuning electronic properties of 2D ferroelectric Al2Se3/graphene heterostructure by ferroelectric polarization and electric field. Phys. B 707, 417172 (2025).

    Google Scholar 

  90. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    Google Scholar 

  91. Wu, L., Zhou, L., Zhou, X., Wang, C. & Ji, W. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B 106, l081401 (2022).

    Google Scholar 

  92. Wang, C. et al. Bethe-slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Phys. Rev. B 102, 020402 (2020).

    Google Scholar 

  93. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Google Scholar 

  94. Bravo, S., Orellana, P. A. & Rosales, L. Role of Coulomb interactions on the electronic properties of monolayer NiX2 (X=S, Se): A DFT+U+V study. Phys. Rev. B 108, 235138 (2023).

    Google Scholar 

  95. Garcia, V. et al. Ferroelectric control of spin polarization. Science 327, 1106–1110 (2010).

    Google Scholar 

  96. Kang, L. et al. Computational study on ferroelectric control over spin polarization in the bipolar magnetic semiconductor. Appl. Phys. Lett. 124, 132902 (2024).

    Google Scholar 

  97. Yang, T. H. et al. Ferroelectric transistors based on shear-transformation-mediated rhombohedral-stacked molybdenum disulfide. Nat. Electron. 7, 29–38 (2023).

    Google Scholar 

  98. Tao, L., Dou, M., Wang, X. & Tsymbal, E. Ferroelectric spin-orbit valve effect. Phys. Rev. Lett. 134, 076801 (2025).

    Google Scholar 

  99. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  100. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  101. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  102. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Google Scholar 

  103. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Key R&D Program of China (Grant No. 2022YFA1405100), Chinese Academy of Sciences Project for Young Scientists in Basic Research (Grant No. YSBR-030), Basic Research Program of the Chinese Academy of Sciences Based on Major Scientific Infrastructures (Grant No. JZHKYPT-2021-08), and National Natural Science Foundation of China (Grant No. 12074378). G.S. was supported in part by the Innovation Program for Quantum Science and Technology under Grant No. 2024ZD0300500, NSFC No. 12447101 and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB1270000).

Author information

Authors and Affiliations

  1. Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China

    Jia-Wen Li

  2. Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China

    Jia-Wen Li, Gang Su & Bo Gu

  3. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, China

    Gang Su

  4. Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, China

    Gang Su

  5. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China

    Gang Su & Bo Gu

Authors
  1. Jia-Wen Li
    View author publications

    Search author on:PubMed Google Scholar

  2. Gang Su
    View author publications

    Search author on:PubMed Google Scholar

  3. Bo Gu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.W.L. and B.G. conceived the original ideas and supervised the work. J.W.L. performed the first principles calculations and data analysis. G.S. joint the data discussions. All authors participated in discussing and editing the manuscripts.

Corresponding authors

Correspondence to Gang Su or Bo Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Information

Description of Additional Supplementary Files

Supplementary Data 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JW., Su, G. & Gu, B. Nonvolatile ferroelectric switching of room-temperature bipolar magnetic semiconductors for energy-efficient spintronics. Commun Phys (2026). https://doi.org/10.1038/s42005-025-02485-4

Download citation

  • Received: 03 July 2025

  • Accepted: 24 December 2025

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s42005-025-02485-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing