Abstract
Ultracold quantum gases with long-range anisotropic interactions host novel exotic phases of matter, such as supersolids, exhibiting both rigid and superfluid characteristics. The impact of this interplay on the out-of-equilibrium dynamics of dipolar gases, and in particular its connection with universal turbulent behavior, remains highly unexplored. Here, upon considering a dipolar Bose-Einstein condensate of dysprosium atoms being dynamically driven across the supersolid-superfluid phase transition and vice versa, we unveil the emergence of a robust nonequilibrium quasi-steady state. This state displays self-similar momentum distributions exhibiting algebraic decay at large momenta, with scaling exponents supporting the existence of wave turbulence. We demonstrate that supersolidity sustaining higher-lying momenta, associated with the roton minimum, promotes the development of turbulence. Our results provide a stepping stone toward unraveling and exploiting turbulent and self-similar behavior in anisotropically long-range interacting quantum gases amenable in current experiments.
Similar content being viewed by others
Data availability
The data associated with this work are available from the corresponding author upon request.
Code availability
The code associated with this work are available from the corresponding author upon request.
References
Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301 (1941).
Obukhov, A. On the distribution of energy in the spectrum of turbulent flow. Dokl. Akad. Nauk SSSR. 32, 22 (1941).
Kraichnan, R. H. Inertial ranges in two-dimensional turbulene. Phys. Fluids 10, 1417 (1967).
Frisch, U. Turbulence: the legacy of AN Kolmogorov (Cambridge University Press, 1995).
Hwang, P. A., Wang, D. W., Walsh, E. J., Krabill, W. B. & Swift, R. N. Airborne measurements of the wavenumber spectra of ocean surface waves. Part I: spectral slope and dimensionless spectral coefficient. J. Phys. Oceanogr. 30, 2753 (2000).
Cobelli, P. et al. Different regimes for water wave turbulence. Phys. Rev. Lett. 107, 214503 (2011).
Choi, H. J., Lim, S. T., Lai, P.-Y. & Chan, C. K. Turbulent drag reduction and degradation of DNA. Phys. Rev. Lett. 89, 088302 (2002).
Bakas, N. A. & Ioannou, P. J. Emergence of large scale structure in barotropic β-plane turbulence. Phys. Rev. Lett. 110, 224501 (2013).
Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. Zonal flows in plasma-a review. Plasma Phys. Control. Fusion 47, R35 (2005).
Mösta, P. et al. A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature 528, 376 (2015).
Chorin, A. J. Vorticity and Turbulence (Springer, 1994).
Yao, J. & Hussain, F. Vortex reconnection and turbulence cascade. Annu. Rev. Fluid Mech. 54, 317 (2022).
Zakharov, V. E., L’vov, V. S. & Falkovich, G. Kolmogorov spectra of turbulence I: Wave turbulence (Springer, 1992).
Nazarenko, S. Wave turbulence, 825 (Springer, 2011).
Dyachenko, S., Newell, A., Pushkarev, A. & Zakharov, V. Optical turbulence: weak turbulence, condensates and collapsing filaments in the nonlinear schrödinger equation. Phys. D: Nonlinear Phenom. 57, 96 (1992).
Madeira, L., Caracanhas, M. A., dos Santos, F. & Bagnato, V. S. Quantum turbulence in quantum gases. Annu. Rev. Condens. Matter Phys. 11, 37 (2020).
Tsatsos, M. C. et al. Quantum turbulence in trapped atomic Bose–Einstein condensates. Phys. Rep. 622, 1 (2016).
Navon, N., Gaunt, A. L., Smith, R. P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72 (2016).
Vinen, W. & Niemela, J. Quantum turbulence. J. Low Temp. Phys. 128, 167 (2002).
Seman, J. A. et al. Route to turbulence in a trapped Bose-Einstein condensate. Laser Phys. Lett. 8, 691 (2011).
Yukalov, V. I., Yukalova, E. P. & Bagnato, V. S. Trapped Bose-Einstein condensates with nonlinear coherent modes. Laser Phys. 33, 123001 (2023).
Kwon, W. J., Moon, G., Choi, J. -y, Seo, S. W. & Shin, Y. -i Relaxation of superfluid turbulence in highly oblate bose-einstein condensates. Phys. Rev. A 90, 063627 (2014).
Henn, E. A. L., Seman, J. A., Roati, G., MagalhĂŁes, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).
Neely, T. W. et al. Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Phys. Rev. Lett. 111, 235301 (2013).
Gauthier, G. et al. Giant vortex clusters in a two-dimensional quantum fluid. Science 364, 1264 (2019).
Johnstone, S. P. et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 364, 1267 (2019).
Baggaley, A. W. & Barenghi, C. F. Spectrum of turbulent Kelvin-waves cascade in superfluid helium. Phys. Rev. B 83, 134509 (2011).
Mossman, M. E., Hoefer, M. A., Julien, K., Kevrekidis, P. G. & Engels, P. Dissipative shock waves generated by a quantum-mechanical piston. Nat. Commun. 9, 4665 (2018).
Ghosh Dastidar, M., Das, S., Mukherjee, K. & Majumder, S. Pattern formation and evidence of quantum turbulence in binary Bose-Einstein condensates interacting with a pair of Laguerre-Gaussian laser beams. Phys. Lett. A 421, 127776 (2022).
Das, S., Mukherjee, K. & Majumder, S. Vortex formation and quantum turbulence with rotating paddle potentials in a two-dimensional binary Bose-Einstein condensate. Phys. Rev. A 106, 023306 (2022).
Bulgac, A., Kafker, M., Abdurrahman, I. & Wlazłowski, G. Quantum turbulence, superfluidity, non-Markovian dynamics, and wave function thermalization. Phys. Rev. Res. 6, L042003 (2024).
Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2d wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).
Navon, N. et al. Synthetic dissipation and cascade fluxes in a turbulent quantum gas. Science 366, 382 (2019).
Dogra, L. H. et al. Universal equation of state for wave turbulence in a quantum gas. Nature 620, 521 (2023).
Martirosyan, G., Fujimoto, K. & Navon, N. An equation of state for turbulence in the gross-pitaevskii model. Preprint at https://doi.org/10.48550/arXiv.2407.08738 (2024).
Zhu, Y., Krstulovic, G. & Nazarenko, S. Turbulence and far-from-equilibrium equation of state of Bogoliubov waves in Bose-Einstein condensates. Preprint at https://doi.org/10.48550/arXiv.2408.15163 (2024).
Karailiev, A. et al. Observation of an inverse turbulent-wave cascade in a driven quantum gas. Phys. Rev. Lett. 133, 243402 (2024).
Bland, T., Stagg, G. W., Galantucci, L., Baggaley, A. & Parker, N. G. Quantum ferrofluid turbulence. Phys. Rev. Lett. 121, 174501 (2018).
Chomaz, L. et al. Dipolar physics: a review of experiments with magnetic quantum gases. Rep. Prog. Phys. 86, 026401 (2022).
Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).
Sabari, S., Kishor Kumar, R. & Tomio, L. Vortex dynamics and turbulence in dipolar Bose-Einstein condensates. Phys. Rev. A 109, 023313 (2024).
Prasad, S. B., Parker, N. G. & Baggaley, A. W. Crow instability of vortex lines in dipolar superfluids. Sci. Rep. 15, 33364 (2025).
Altmeyer, S., Do, Y. & Lai, Y.-C. Transition to turbulence in Taylor-Couette ferrofluidic flow. Sci. Rep. 5, 10781 (2015).
Mouraya, S., Pan, N. & Banerjee, S. Stationary and nonstationary energy cascades in homogeneous ferrofluid turbulence. Phys. Rev. Fluids 9, 094604 (2024).
Altmeyer, S., Do, Y. & Lai, Y.-C. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system. Sci. Rep. 5, 18589 (2015).
Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).
Aikawa, K. et al. Bose-Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).
Miyazawa, Y., Inoue, R., Matsui, H., Nomura, G. & Kozuma, M. Bose-Einstein condensation of europium. Phys. Rev. Lett. 129, 223401 (2022).
Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194 (2016).
Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016).
Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).
Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).
Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. Phys. Rev. A 94, 043618 (2016).
Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603 (2016).
Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256 (1970).
Leggett, A. J. Can a Solid Be “Superfluid"?. Phys. Rev. Lett. 25, 1543 (1970).
Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).
Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).
Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).
Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357 (2021).
Biagioni, G. et al. Dimensional crossover in the superfluid-supersolid quantum phase transition. Phys. Rev. X 12, 021019 (2022).
Bland, T. et al. Two-dimensional supersolid formation in dipolar condensates. Phys. Rev. Lett. 128, 195302 (2022).
Petter, D. et al. Probing the Roton excitation spectrum of a stable dipolar Bose Gas. Phys. Rev. Lett. 122, 183401 (2019).
Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386–389 (2019).
Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: what and where are they?. Rev. Mod. Phys. 84, 759 (2012).
Poli, E., Baillie, D., Ferlaino, F. & Blakie, P. B. Excitations of a two-dimensional supersolid. Phys. Rev. A 110, 053301 (2024).
Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135 (1957).
Zhang, F. & Yin, L. Phonon stability of quantum droplets in dipolar Bose gases. Chinese Phys. Lett. 39, 060301 (2022).
Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).
Baillie, D. & Blakie, P. B. Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).
Casotti, E. et al. Observation of vortices in a dipolar supersolid. Nature 635, 327 (2024).
Ronen, S., Bortolotti, D. C. E., Blume, D. & Bohn, J. L. Dipolar Bose-Einstein condensates with dipole-dependent scattering length. Phys. Rev. A 74, 033611 (2006).
Yi, S. & You, L. Trapped condensates of atoms with dipole interactions. Phys. Rev. A 63, 053607 (2001).
Chin, C., Grimm, R., Julienne, P. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010).
Maier, T. et al. Broad universal feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).
Schützhold, R., Uhlmann, M., Xu, Y. & Fischer, U. R. Mean-field expansion in Bose–Einstein condensates with finite-range interactions. Int. J. Mod. Phys. B 20, 3555 (2006).
Zhu, Y., Semisalov, B., Krstulovic, G. & Nazarenko, S. Direct and inverse cascades in turbulent Bose-Einstein condensates. Phys. Rev. Lett. 130, 133001 (2023).
Kolmakov, G. V., McClintock, P. V. E. & Nazarenko, S. V. Wave turbulence in quantum fluids. Proc. Natl. Acad. Sci. USA 111, 4727 (2014).
Ripley, B. T. E., Baillie, D. & Blakie, P. B. Two-dimensional supersolidity in a planar dipolar Bose gas. Phys. Rev. A 108, 053321 (2023).
Hertkorn, J. et al. Pattern formation in quantum ferrofluids: from supersolids to superglasses. Phys. Rev. Res. 3, 033125 (2021).
Reeves, M. T., Billam, T. P., Anderson, B. P. & Bradley, A. S. Inverse energy cascade in forced two-dimensional quantum turbulence. Phys. Rev. Lett. 110, 104501 (2013).
Halder, S. et al. Control of 164Dy Bose-Einstein condensate phases and dynamics with dipolar anisotropy. Phys. Rev. Res. 4, 043124 (2022).
Mukherjee, K., Tengstrand, M. N., Cardinale, T. A. & Reimann, S. M. Supersolid stacks in antidipolar Bose-Einstein condensates. Phys. Rev. A 108, 023302 (2023).
Alexakis, A. Quasi-two-dimensional turbulence. Rev. Mod. Plasma Phys. 7, 31 (2023).
Danilov, S. D. & Gurarie, D. Quasi-two-dimensional turbulence. Phys. Usp. 43, 863 (2000).
Crank, J. & Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Math. Proc. Camb. Philos. Soc. 43, 50–67 (1947).
Antoine, X., Bao, W. & Besse, C. Computational methods for the dynamics of the nonlinear schrödinger/gross–pitaevskii equations. Comput. Phys. Commun. 184, 2621 (2013).
Acknowledgements
S. I. M. acknowledges support from the Missouri University of Science and Technology, Department of Physics, in the framework of a Startup fund. Financial support by the Knut and Alice Wallenberg Foundation and the Swedish Research Council are also acknowledged (K. M.). S. I. M. acknowledges extensive discussions with H. R. Sadeghpour in the context of universal dynamics and supersolid character. K.M. gratefully acknowledges many discussions with Stephanie M. Reimann on the topic of supersolidity. The authors acknowledge the anonymous referees for their insightful comments.
Author information
Authors and Affiliations
Contributions
G.A.B. performed the numerical simulations and carried out the associated analysis. K.M. benchmarked part of the simulations and developed numerical scripts for portions of the analysis. S.I.M. conceived the idea of the work, supervised and funded the project. All authors contributed to the interpretation of the results and the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Physics thanks Thomas Bland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Bougas, G.A., Mukherjee, K. & Mistakidis, S.I. Generation of wave turbulence in dipolar gases driven across their phase transitions. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02487-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005-026-02487-w


