Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Exceptional points preceding and enabling spontaneous symmetry breaking
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

Exceptional points preceding and enabling spontaneous symmetry breaking

  • Lewis Hill  ORCID: orcid.org/0000-0001-7670-01831 na1,
  • Julius T. Gohsrich  ORCID: orcid.org/0000-0001-6725-21711,2 na1,
  • Alekhya Ghosh1,2,
  • Jacob Fauman1,2,
  • Pascal Del’Haye1,2 &
  • …
  • Flore K. Kunst1,2 

Communications Physics , Article number:  (2026) Cite this article

  • 1221 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nonlinear optics

Abstract

Spontaneous symmetry breaking (SSB) plays a central role in many areas of physics, from particle interactions to optical systems. Exceptional points (EPs), where system properties become degenerate, are often believed to occur together with SSB. Here we investigate the intricate relationship between SSB and a specific class of EPs across three distinct, real-world scenarios in nonlinear optics. In these systems, the two phenomena do not coincide; they occur at dislocated points in parameter space, but are interdependent. This recurring behavior across disparate platforms implies that such decoupling is not unique to these optical systems, but likely reflects a more general principle. Our results highlight the need for careful analysis of assumed correlations between SSB and EPs in both theoretical and applied contexts. They deepen our understanding of nonlinear dynamics in optical systems and prompt a broader reconsideration of contexts where EPs and SSB are thought to be interdependent.

Similar content being viewed by others

Spontaneous symmetry breaking and ghost states in two-dimensional fractional nonlinear media with non-Hermitian potential

Article Open access 05 May 2023

Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator

Article Open access 29 June 2021

Reconfigurable chalcogenide integrated nonlinear photonics

Article Open access 19 November 2025

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Google Scholar 

  2. Kato, T.Perturbation Theory for Linear Operators (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).

  3. Berry, M. Physics of Nonhermitian Degeneracies. Czechoslovak J. Phys. 54, 1039–1047 (2004).

    Google Scholar 

  4. Heiss, W. D. The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2012).

    Google Scholar 

  5. Kaplan, A. E. & Meystre, P. Enhancement of the Sagnac effect due to nonlinearly induced nonreciprocity. Opt. Lett. 6, 590–592 (1981).

    Google Scholar 

  6. Kaplan, A. E. & Meystre, P. Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer. Opt. Commun. 40, 229–232 (1982).

    Google Scholar 

  7. Wright, E. M., Meystre, P., Firth, W. J. & Kaplan, A. E. Theory of the nonlinear Sagnac effect in a fiber-optic gyroscope. Phys. Rev. A 32, 2857–2863 (1985).

    Google Scholar 

  8. Geddes, J. B., Moloney, J. V., Wright, E. M. & Firth, W. J. Polarisation patterns in a nonlinear cavity. Opt. Commun. 111, 623–631 (1994).

    Google Scholar 

  9. Xu, Y. & Coen, S. Experimental observation of the spontaneous breaking of the time-reversal symmetry in a synchronously pumped passive Kerr resonator. Opt. Lett. 39, 3492–3495 (2014).

    Google Scholar 

  10. Li, J., Zhan, X., Ding, C., Zhang, D. & Wu, Y. Enhanced nonlinear optics in coupled optical microcavities with an unbroken and broken parity-time symmetry. Phys. Rev. A 92, 043830 (2015).

    Google Scholar 

  11. Rossi, J., Carretero-González, R., Kevrekidis, P. G. & Haragus, M. On the spontaneous time-reversal symmetry breaking in synchronously-pumped passive Kerr resonators. J. Phys. A: Math. Theor. 49, 455201 (2016).

    Google Scholar 

  12. Del Bino, L., Silver, J. M., Stebbings, S. L. & Del’Haye, P. Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator. Sci. Rep. 7, 43142 (2017).

    Google Scholar 

  13. Cao, Q.-T. et al. Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator. Phys. Rev. Lett. 118, 033901 (2017).

    Google Scholar 

  14. Woodley, M. T. M. et al. Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators. Phys. Rev. A 98, 053863 (2018).

    Google Scholar 

  15. Hendry, I. et al. Spontaneous symmetry breaking and trapping of temporal Kerr cavity solitons by pulsed or amplitude-modulated driving fields. Phys. Rev. A 97, 053834 (2018).

    Google Scholar 

  16. Bino, L. D. et al. Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect. Optica 5, 279–282 (2018).

    Google Scholar 

  17. Copie, F. et al. Interplay of Polarization and Time-Reversal Symmetry Breaking in Synchronously Pumped Ring Resonators. Phys. Rev. Lett. 122, 013905 (2019).

    Google Scholar 

  18. Wu, C., Fan, J., Chen, G. & Jia, S. Symmetry-breaking-induced dynamics in a nonlinear microresonator. Opt. Express 27, 28133–28142 (2019).

    Google Scholar 

  19. Cuong, N. D. et al. Spontaneous symmetry breaking in coupled ring resonators with linear gain and nonlinear loss. Vinh Univ. J. Sci. 48, 39–48 (2019).

    Google Scholar 

  20. Hill, L., Oppo, G.-L., Woodley, M. T. M. & Del’Haye, P. Effects of self- and cross-phase modulation on the spontaneous symmetry breaking of light in ring resonators. Phys. Rev. A 101, 013823 (2020).

    Google Scholar 

  21. Garbin, B. et al. Asymmetric balance in symmetry breaking. Phys. Rev. Res. 2, 023244 (2020).

    Google Scholar 

  22. Dolinina, D. & Yulin, A. Spontaneous symmetry breaking of nonlinear states in optical cavities with radiative losses. Opt. Lett. 45, 3781–3784 (2020).

    Google Scholar 

  23. Moroney, N. et al. Logic Gates Based on Interaction of Counterpropagating Light in Microresonators. J. Lightwave Technol. 38, 1414–1419 (2020).

    Google Scholar 

  24. Ghalanos, G. N. et al. Kerr-Nonlinearity-Induced Mode-Splitting in Optical Microresonators. Phys. Rev. Lett. 124, 223901 (2020).

    Google Scholar 

  25. Woodley, M. T. M., Hill, L., Del Bino, L., Oppo, G.-L. & Del’Haye, P. Self-Switching Kerr Oscillations of Counterpropagating Light in Microresonators. Phys. Rev. Lett. 126, 043901 (2021).

    Google Scholar 

  26. Silver, J. M., Grattan, K. T. V. & Del’Haye, P. Critical dynamics of an asymmetrically bidirectionally pumped optical microresonator. Phys. Rev. A 104, 043511 (2021).

    Google Scholar 

  27. Xu, G. et al. Spontaneous symmetry breaking of dissipative optical solitons in a two-component Kerr resonator. Nat. Commun. 12, 4023 (2021).

    Google Scholar 

  28. Garbin, B. et al. Dissipative Polarization Domain Walls in a Passive Coherently Driven Kerr Resonator. Phys. Rev. Lett. 126, 023904 (2021).

    Google Scholar 

  29. Fatome, J. et al. Self-symmetrization of symmetry-breaking dynamics in passive Kerr resonators. arXiv preprint arXiv:2106.07642 (2021).

  30. Li, Y.-Y., Cao, Q.-T., Chen, J. -h, Yu, X.-C. & Xiao, Y.-F. Microcavity Sensor Enhanced by Spontaneous Chiral Symmetry Breaking. Phys. Rev. Appl. 16, 044016 (2021).

    Google Scholar 

  31. Silver, J. M. et al. Nonlinear enhanced microresonator gyroscope. Optica 8, 1219–1226 (2021).

    Google Scholar 

  32. Xu, G. et al. Breathing dynamics of symmetry-broken temporal cavity solitons in Kerr ring resonators. Opt. Lett. 47, 1486–1489 (2022).

    Google Scholar 

  33. Sanvert, Y. et al. Symmetry Broken Localized Structures in a Coherently-Driven Fabry-Pérot Kerr Resonator. In 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2025).

  34. Ghosh, A. et al. Spontaneous Symmetry Breaking of Cavity Solitons in Coupled Resonators. In 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2025).

  35. Campbell, G. N., Zhang, S., Del Bino, L., Del’Haye, P. & Oppo, G.-L. Counterpropagating light in ring resonators: Switching fronts, plateaus, and oscillations. Phys. Rev. A 106, 043507 (2022).

    Google Scholar 

  36. Mai, J. & Cheah, K. W. Nonreciprocal transmission in a nonlinear coupled heterostructure. Opt. Express 30, 46357–46365 (2022).

    Google Scholar 

  37. Mai, J., Chen, Y., Li, G. & Cheah, K. W. Double exceptional points in grating coupled metal-insulator-metal heterostructure. Opt. Express 30, 40053–40062 (2022).

    Google Scholar 

  38. Moroney, N. et al. A Kerr polarization controller. Nat. Commun. 13, 398 (2022).

    Google Scholar 

  39. Hill, L., Oppo, G.-L. & Del’Haye, P. Multi-stage spontaneous symmetry breaking of light in Kerr ring resonators. Commun. Phys. 6, 1–9 (2023).

    Google Scholar 

  40. Ghosh, A., Hill, L., Oppo, G.-L. & Del’Haye, P. Four-field symmetry breakings in twin-resonator photonic isomers. Phys. Rev. Res. 5, L042012 (2023).

    Google Scholar 

  41. Bitha, R. D. D., Giraldo, A., Broderick, N. G. R. & Krauskopf, B. Bifurcation analysis of complex switching oscillations in a Kerr microring resonator. Phys. Rev. E 108, 064204 (2023).

    Google Scholar 

  42. Wang, W. et al. Spontaneous Synchronization and Exceptional Points in Breather Complexes. Phys. Rev. Appl. 20, 024060 (2023).

    Google Scholar 

  43. Quinn, L. et al. Random number generation using spontaneous symmetry breaking in a Kerr resonator. Opt. Lett. 48, 3741–3744 (2023).

    Google Scholar 

  44. Campbell, G. N., Hill, L., Del Haye, P. & Oppo, G. L. Vectorial light in fabry-perot resonators in the normal dispersion regime. arXiv preprint arXiv:2509.17663 (2025).

  45. Mai, J., Huang, X., Guo, X., Fan, H. & Cheah, K. W. Spontaneous symmetry breaking of coupled Fabry–Pérot nanocavities. Commun. Phys. 7, 1–6 (2024).

    Google Scholar 

  46. Lucas, E. et al. Polarization Faticons: Chiral Localized Structures in Self-Defocusing Kerr Resonators. Phys. Rev. Lett. 135, 063803 (2025).

    Google Scholar 

  47. Hill, L. et al. Controlling Frequency Comb Line Spacing Via Symmetry Broken Faticons. In 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2025).

  48. Campbell, G. N., Hill, L., Del’Haye, P. & Oppo, G.-L. Frequency comb enhancement via the self-crystallization of vectorial cavity solitons. Opt. Express 32, 37691–37702 (2024).

    Google Scholar 

  49. Ghosh, A. et al. Controlled light distribution with coupled microresonator chains via Kerr symmetry breaking. Photonics Res. 12, 2376–2389 (2024).

    Google Scholar 

  50. Hill, L. et al. Symmetry broken vectorial Kerr frequency combs from Fabry-Pérot resonators. Commun. Phys. 7, 1–9 (2024).

    Google Scholar 

  51. Coen, S. et al. Nonlinear topological symmetry protection in a dissipative system. Nat. Commun. 15, 1398 (2024).

    Google Scholar 

  52. Pal, A. et al. Linear and nonlinear coupling of light in twin-resonators with Kerr nonlinearity. Photonics Res. 12, 2733–2740 (2024).

    Google Scholar 

  53. Rah, Y. & Yu, K. Demonstration of spontaneous symmetry breaking in self-modulated ring resonators. Phys. Rev. Res. 6, 013234 (2024).

    Google Scholar 

  54. Ghosh, A. et al. Phase Symmetry Breaking of Counterpropagating Light in Microresonators for Switches and Logic Gates. Laser Photonics Rev. e01500 (2025).

  55. Zhang, Y. et al. Integrated optical switches based on Kerr symmetry breaking in microresonators. Photonics Res. 13, 360–366 (2025).

    Google Scholar 

  56. Jalas, D. et al. What is — and what is not — an optical isolator. Nat. Photonics 7, 579–582 (2013).

    Google Scholar 

  57. Chang, L. et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics 8, 524–529 (2014).

    Google Scholar 

  58. Mai, J. & Cheah, K. W. Nonreciprocity through gain saturation in coupled nanocavities. Phys. Rev. B 109, 035101 (2024).

    Google Scholar 

  59. Shanavas, T., Krueper, G., Zhu, J., Park, W. & Gopinath, J. T. Nonlinear Symmetry Breaking to Enhance the Sagnac Effect in a Microresonator Gyroscope. arXiv preprint arXiv:2508.09132 (2025)

  60. Wang, P., Li, C., Xiao, Z. & Xu, G. Observation of Polarization Symmetry-Broken Platicons in a Passive Kerr Resonator with Normal Dispersion. In 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2025).

  61. Pal, A. et al. Characterization of Light Scattering in Microresonator via Symmetry Breaking of Counterpropagating Light. In 2025 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (2025).

  62. Mazo-Vasquez, J. D., Gohsrich, J. T., Kunst, F. K. & Hill, L. An algebraic approach to bifurcations in kerr ring and fabry-perot resonators. arXiv preprint arXiv:2512.14168 (2025).

  63. Campbell, G. N., Hill, L., Del’Haye, P. & Oppo, G.-L. Dark solitons in Fabry-Pérot resonators with Kerr media and normal dispersion. Phys. Rev. A 108, 033505 (2023).

    Google Scholar 

  64. Lugiato, L. A. & Lefever, R. Spatial Dissipative Structures in Passive Optical Systems. Phys. Rev. Lett. 58, 2209–2211 (1987).

    Google Scholar 

  65. Lugiato, L. A., Prati, F., Gorodetsky, M. L. & Kippenberg, T. J. From the Lugiato–Lefever equation to microresonator-based soliton Kerr frequency combs. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 376, 20180113 (2018).

    Google Scholar 

  66. Haelterman, M., Trillo, S. & Wabnitz, S. Dissipative modulation instability in a nonlinear dispersive ring cavity. Opt. Commun. 91, 401–407 (1992).

    Google Scholar 

  67. Cole, D. C., Gatti, A., Papp, S. B., Prati, F. & Lugiato, L. Theory of Kerr frequency combs in Fabry-Pérot resonators. Phys. Rev. A 98, 013831 (2018).

    Google Scholar 

  68. Skryabin, D. V. Hierarchy of coupled mode and envelope models for bi-directional microresonators with Kerr nonlinearity. OSA Contin. 3, 1364–1375 (2020).

    Google Scholar 

  69. Bernstein, J. Spontaneous symmetry breaking, gauge theories, the Higgs mechanism and all that. Rev. Mod. Phys. 46, 7–48 (1974).

    Google Scholar 

  70. Baskaran, G. & Anderson, P. W. Gauge theory of high-temperature superconductors and strongly correlated Fermi systems. Phys. Rev. B 37, 580–583 (1988).

    Google Scholar 

  71. Lin, Z. et al. Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures. Phys. Rev. Lett. 106, 213901 (2011).

    Google Scholar 

  72. Fleury, R., Sounas, D. L. & Alù, A. Negative Refraction and Planar Focusing Based on Parity-Time Symmetric Metasurfaces. Phys. Rev. Lett. 113, 023903 (2014).

    Google Scholar 

  73. Goldzak, T., Mailybaev, A. A. & Moiseyev, N. Light Stops at Exceptional Points. Phys. Rev. Lett. 120, 013901 (2018).

    Google Scholar 

  74. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    Google Scholar 

  75. Haus, H. & Huang, W. Coupled-mode theory. Proc. IEEE 79, 1505–1518 (1991).

    Google Scholar 

  76. Yariv, A. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron. 9, 919–933 (1973).

    Google Scholar 

  77. Gordon, J. P. & Kogelnik, H. PMD fundamentals: Polarization mode dispersion in optical fibers. Proc. Natl. Acad. Sci. 97, 4541–4550 (2000).

    Google Scholar 

  78. Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48, 2909–2947 (1969).

    Google Scholar 

  79. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Google Scholar 

  80. Fox, M. Quantum Optics: An Introduction (Oxford University Press, 2006).

  81. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Google Scholar 

  82. Özdemir, ŞK., Rotter, S., Nori, F. & Yang, L. Parity–time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Google Scholar 

  83. Bernard, D. & LeClair, A. A Classification of Non-Hermitian Random Matrices. In Cappelli, A. & Mussardo, G. (eds.) Statistical Field Theories, NATO Science Series, 207–214 (Springer Netherlands, Dordrecht, 2002).

  84. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and Topology in Non-Hermitian Physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  85. Delplace, P., Yoshida, T. & Hatsugai, Y. Symmetry-Protected Multifold Exceptional Points and Their Topological Characterization. Phys. Rev. Lett. 127, 186602 (2021).

    Google Scholar 

  86. Sayyad, S. & Kunst, F. K. Realizing exceptional points of any order in the presence of symmetry. Phys. Rev. Res. 4, 023130 (2022).

    Google Scholar 

  87. Budich, J. C., Carlström, J., Kunst, F. K. & Bergholtz, E. J. Symmetry-protected nodal phases in non-Hermitian systems. Phys. Rev. B 99, 041406 (2019).

    Google Scholar 

  88. Yoshida, T., Peters, R., Kawakami, N. & Hatsugai, Y. Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry. Phys. Rev. B 99, 121101 (2019).

    Google Scholar 

  89. Okugawa, R. & Yokoyama, T. Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries. Phys. Rev. B 99, 041202 (2019).

    Google Scholar 

  90. Bender, C. M. & Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998).

    Google Scholar 

  91. Bender, C. M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2007).

    Google Scholar 

  92. Gräfe, M. et al. Correlations of indistinguishable particles in non-Hermitian lattices. N. J. Phys. 15, 033008 (2013).

    Google Scholar 

  93. Guo, A. et al. Observation of PT-Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 103, 093902 (2009).

    Google Scholar 

  94. Dal Cin, N., Marquardt, F. & Wanjura, C. C. Training nonlinear optical neural networks with Scattering Backpropagation. arXiv preprint arXiv:2508.11750 (2025).

  95. Montag, A. & Kunst, F. K. Symmetry-induced higher-order exceptional points in two dimensions. Phys. Rev. Res. 6, 023205 (2024).

    Google Scholar 

  96. Kominis, Y., Kovanis, V. & Bountis, T. Spectral signatures of exceptional points and bifurcations in the fundamental active photonic dimer. Phys. Rev. A 96, 053837 (2017).

    Google Scholar 

  97. Felski, A. & Kunst, F. K. Exceptional points and stability in nonlinear models of population dynamics having PT symmetry. Phys. Rev. Res. 7, 013326 (2025).

    Google Scholar 

  98. Bai, K. et al. Nonlinear Exceptional Points with a Complete Basis in Dynamics. Phys. Rev. Lett. 130, 266901 (2023).

    Google Scholar 

  99. Bai, K. et al. Observation of Nonlinear Exceptional Points with a Complete Basis in Dynamics. Phys. Rev. Lett. 132, 073802 (2024).

    Google Scholar 

  100. Yoshida, T., Isobe, T. & Hatsugai, Y. Exceptional points and non-Hermitian skin effects under nonlinearity of eigenvalues. Phys. Rev. B 111, 064310 (2025).

    Google Scholar 

  101. Fang, L. et al. Exceptional features in nonlinear Hermitian systems. Phys. Rev. B 111, L161102 (2025).

    Google Scholar 

  102. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photonics 4, 471–476 (2010).

    Google Scholar 

  103. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publications, 1964).

Download references

Acknowledgements

We thank Alexander Felski, George Ghalanos, Kyle Kawagoe, Jona Kayser, and Anton Montag for insightful discussions. We also acknowledge early, separate, and unpublished work by Michael T.M. Woodley exploring the connection between Jacobian EPs and SSB in counter-propagating light, which came to our attention late in the development of this project. L.H. acknowledges funding from the Max Planck Society (MPG) and the Centre national de la recherche scientifique (CNRS). J.T.G. and F.K.K. acknowledge support from the MPG Lise Meitner Excellence Program 2.0. L.H., J.T.G., and F.K.K. also acknowledge funding from the European Union’s ERC Starting Grant “NTopQuant” (101116680). L.H., A.G. and P.D’H. acknowledge support through the ERC Starting Grant “CounterLight” (756966). The views expressed are those of the authors and do not necessarily reflect those of the EU or the ERC. Neither the EU nor the granting authority can be held responsible for them.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Lewis Hill, Julius T. Gohsrich.

Authors and Affiliations

  1. Max Planck Institute for the Science of Light, 91058, Erlangen, Germany

    Lewis Hill, Julius T. Gohsrich, Alekhya Ghosh, Jacob Fauman, Pascal Del’Haye & Flore K. Kunst

  2. Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany

    Julius T. Gohsrich, Alekhya Ghosh, Jacob Fauman, Pascal Del’Haye & Flore K. Kunst

Authors
  1. Lewis Hill
    View author publications

    Search author on:PubMed Google Scholar

  2. Julius T. Gohsrich
    View author publications

    Search author on:PubMed Google Scholar

  3. Alekhya Ghosh
    View author publications

    Search author on:PubMed Google Scholar

  4. Jacob Fauman
    View author publications

    Search author on:PubMed Google Scholar

  5. Pascal Del’Haye
    View author publications

    Search author on:PubMed Google Scholar

  6. Flore K. Kunst
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.H. and J.T.G. carried out the majority of the calculations and theoretical work and should be considered co-first authors. They were supported by A.G. and J.F., who contributed to discussions and the analysis of results. F.K.K. and P.D’H. initiated the project and provided ongoing guidance, engaging in discussions with all authors. L.H. and J.T.G. prepared the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Lewis Hill or Julius T. Gohsrich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Kazuki Sone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hill, L., Gohsrich, J.T., Ghosh, A. et al. Exceptional points preceding and enabling spontaneous symmetry breaking. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02491-0

Download citation

  • Received: 05 May 2025

  • Accepted: 02 January 2026

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02491-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing