Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Search for superconducting icosahedral hydrides via coordination number engineering
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Search for superconducting icosahedral hydrides via coordination number engineering

  • Hao Song  ORCID: orcid.org/0000-0002-7648-26031,
  • Mingyang Du1,
  • Zihan Zhang2,
  • Defang Duan  ORCID: orcid.org/0000-0002-6878-18302 &
  • …
  • Tian Cui1,2 

Communications Physics , Article number:  (2026) Cite this article

  • 511 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Superconducting properties and materials

Abstract

Superconducting hydrides provides a possible route to hunt for high-temperature superconductors. Recent high-throughput calculations suggest hydrides, which are combined by alkali or alkali-earth elements and hydrogen-and-transition-metal units, as potential candidates of superconducting hydrides under ambient pressure. Inspired by the results of high-throughput calculations. Here we propose a strategy to construct high-temperature superconductors by engineering coordination number of known hydrogen-and-transition-metal units in hydrides. Based on hydrogen-and-transition-metal unit [ReH9]2- in hydride BaReH9, we find ternary hydrides BaReH12 with different coordination number of Re from 12 to 14 as pressure increasing. Notably, a icosahedral unit [ReH12]2-, which exhibits coordination number as high as 12 in hydride BaReH12, drives superconducting critical temperature around 128 K at 100 GPa. Our results suggest that engineering coordination number of hydrogen-metal unit not only trigger the discovery of high-temperature hydride superconductors, but also attracts wide attention from high-pressure physics and coordination chemistry.

Similar content being viewed by others

Superconductivity above 200 K discovered in superhydrides of calcium

Article Open access 23 May 2022

Metadata-driven identification of high-temperature superconductor candidates

Article Open access 29 December 2025

Phonon-mediated high-temperature superconductivity in clathrate superhydride ThCeH18 under pressure

Article Open access 01 July 2025

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Further data and information that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    Google Scholar 

  2. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Google Scholar 

  3. Bi, T., Zarifi, N., Terpstra, T. & Zurek, E. The search for superconductivity in high pressure hydrides. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, (Elsevier, 2019).

  4. Duan, D. F. et al. Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev. 4, 121–135 (2017).

    Google Scholar 

  5. Flores-Livas, J. A. et al. A perspective on conventional high-temperature superconductors at high pressure: methods and materials. Phys. Rep. Rev. Sect. Phys. Lett. 856, 1–78 (2020).

    Google Scholar 

  6. Jin, X. et al. Superconducting high-pressure phases of disilane. Proc. Natl. Acad. Sci. USA 107, 9969–9973 (2010).

    Google Scholar 

  7. Zhong, X. et al. Tellurium hydrides at high pressures: high-temperature superconductors. Phys. Rev. Lett. 116, 057002 (2016).

    Google Scholar 

  8. Liu, H., Naumov, I. I., Hoffmann, R., Ashcroft, N. W. & Hemley, R. J. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA 114, 6990–6995 (2017).

    Google Scholar 

  9. Peng, F. et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity. Phys. Rev. Lett. 119, 6 (2017).

    Google Scholar 

  10. Ma, L. et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett. 128, 167001 (2022).

    Google Scholar 

  11. Duan, D. et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep. 4, 6968 (2014).

    Google Scholar 

  12. Duan, D. et al. Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B 91, 180502(R) (2015).

  13. Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    Google Scholar 

  14. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528 (2019).

    Google Scholar 

  15. Semenok, D. V., Kruglov, I. A., Savkin, I. A., Kvashnin, A. G. & Oganov, A. R. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mat. Sci. 24, 9 (2020).

    Google Scholar 

  16. Duan, D. F., Yu, H. Y., Xie, H. & Cui, T. Ab initio approach and its impact on superconductivity. J. Supercond. Nov. Magn. 32, 53–60 (2019).

    Google Scholar 

  17. Du, M., Zhao, W., Cui, T. & Duan, D. Compressed superhydrides: the road to room temperature superconductivity. J. Phys. Condens Matter 34, 173001 (2022).

    Google Scholar 

  18. Ma, Y. B. et al. Prediction of superconducting ternary hydride MgGeH6: from divergent high-pressure formation routes. Phys. Chem. Chem. Phys. 19, 27406–27412 (2017).

    Google Scholar 

  19. Ma, Y. B. et al. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure. Phys. Rev. B 96, 8 (2017).

    Google Scholar 

  20. Muramatsu, T. et al. Metallization and superconductivity in the hydrogen-rich ionic salt BaReH9. J. Phys. Chem. C. 119, 18007–18013 (2015).

    Google Scholar 

  21. Vinitsky, E. A. et al. Structural, vibrational, and electronic properties of BaReH9 under pressure. J. Phys. Condens. Matter. 28, 7 (2016).

    Google Scholar 

  22. Shao, Z. et al. Ternary superconducting cophosphorus hydrides stabilized via lithium. npj Comput. Mater. 5, 104 (2019).

    Google Scholar 

  23. Xie, H. et al. High-temperature superconductivity in ternary clathrate YCaH12 under high pressures. J. Phys. Condens. Matter. 31, 245404 (2019).

    Google Scholar 

  24. Sun, Y., Lv, J., Xe, Y., Lu, H. Y. & Ma, Y. M. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure. Phys. Rev. Lett. 123, 5 (2019).

    Google Scholar 

  25. Kokail, C., von der Linden, W. & Boeri, L. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system. Phys. Rev. Mater. 1, 074803 (2017).

    Google Scholar 

  26. Meng, D. et al. Superconductivity of the hydrogen-rich metal hydride Li5MoH11 under high pressure. Phys. Rev. B 99, 024508 (2019).

    Google Scholar 

  27. Zhang, Z. et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett. 128, 047001 (2022).

    Google Scholar 

  28. Song, Y. et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa. Phys. Rev. Lett. 130, 266001 (2023).

    Google Scholar 

  29. Cerqueira, T. F. T., Fang, Y.-W., Errea, I., Sanna, A. & Marques, M. A. L. Searching materials space for hydride superconductors at ambient pressure. Adv. Funct. Mater. 34, 2404043 (2024).

  30. Wang, X., Pickett, W. E., Hutcheon, M., Prasankumar, R. P. & Zurek, E. Why Mg2IrH6 is predicted to be a high-temperature superconductor, but Ca2IrH6 is not. Angew. Chem. Int. Ed. 63, e202412687 (2024).

    Google Scholar 

  31. Hansen, M. F. et al. Synthesis of Mg2IrH5: a potential pathway to high-Tc hydride superconductivity at ambient pressure. Phys. Rev. B 110, 214513 (2024).

    Google Scholar 

  32. Zheng, F. et al. Prediction of ambient pressure superconductivity in cubic ternary hydrides with MH6 octahedra. Mater. Today Phys. 42, 101374 (2024).

    Google Scholar 

  33. Dolui, K. et al. Feasible route to high-temperature ambient-pressure hydride superconductivity. Phys. Rev. Lett. 132, 166001 (2024).

    Google Scholar 

  34. Sanna, A. et al. Prediction of ambient pressure conventional superconductivity above 80 K in hydride compounds. npj Comput. Mater. 10, 44 (2024).

    Google Scholar 

  35. Orgaz, E. & Gupta, M. Electronic structure of BaReH9. J. Alloy. Compd. 293, 217–221 (1999).

    Google Scholar 

  36. Belli, F., Novoa, T., Contreras-García, J. & Errea, I. Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors. Nat. Commun. 12, 5381 (2021).

    Google Scholar 

  37. Hooper, J., Altintas, B., Shamp, A. & Zurek, E. Polyhydrides of the alkaline earth metals: a look at the extremes under pressure. J. Phys. Chem. C. 117, 2982–2992 (2013).

    Google Scholar 

  38. Luo, W. & Ahuja, R. Ab initio prediction of high-pressure structural phase transition in BaH2. J. Alloy. Compd. 446, 405–408 (2007).

    Google Scholar 

  39. Allen, P. B. & Dynes, R. C. Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12, 905–922 (1975).

    Google Scholar 

  40. Eliashberg, G. M. Interactions between Electrons and Lattice Vibrations in a Superconductor. J. Exp. Theor. Phys. 11, 696 (1960).

    Google Scholar 

  41. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

    Google Scholar 

  42. Pickard, C. J. & Needs, R. J. Ab initiorandom structure searching. J. Phys. Condens Matter 23, 053201 (2011).

    Google Scholar 

  43. Pickard, C. J. & Needs, R. J. High-Pressure Phases of Silane. Phys. Rev. Lett. 97, 045504 (2006).

    Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. mat. er 6, 15–50 (1996).

    Google Scholar 

  45. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens Matter 14, 2717–2744 (2002).

    Google Scholar 

  46. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Google Scholar 

  47. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Google Scholar 

  49. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  50. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Google Scholar 

  51. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens Matter 21, 395502 (2009).

    Google Scholar 

  52. Garrity, K. F., Bennett, J. W., Rabe, K. M. & Vanderbilt, D. Pseudopotentials for high-throughput DFT calculations. Comput. Mater. Sci. 81, 446–452 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants No. 52072188, 12122405, 12274169), Program for Science and Technology Innovation Team in Zhejiang (Grant No. 2021R01004), the National Key Research and Development Program of China (Grant No. 2023YFA1406200, 2022YFA1402304), Natural Science Foundation of Zhejiang Province, China (Grant No. LQ24A040001), the Fundamental Research Funds for the Provincial Universities of Zhejiang (Grant No. SJLY2023003) and the Natural Science Foundation of Ningbo (Grant No. 2024J200).

Author information

Authors and Affiliations

  1. Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, China

    Hao Song, Mingyang Du & Tian Cui

  2. State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, China

    Zihan Zhang, Defang Duan & Tian Cui

Authors
  1. Hao Song
    View author publications

    Search author on:PubMed Google Scholar

  2. Mingyang Du
    View author publications

    Search author on:PubMed Google Scholar

  3. Zihan Zhang
    View author publications

    Search author on:PubMed Google Scholar

  4. Defang Duan
    View author publications

    Search author on:PubMed Google Scholar

  5. Tian Cui
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Hao Song: Writing – original draft, Formal analysis, Conceptualization. Mingyan Du: Formal analysis. Zihan Zhang: Writing review & editing, Conceptualization. Defang Duan and Tian Cui proposed the initial idea and supervised the project.

Corresponding authors

Correspondence to Zihan Zhang, Defang Duan or Tian Cui.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H., Du, M., Zhang, Z. et al. Search for superconducting icosahedral hydrides via coordination number engineering. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02494-x

Download citation

  • Received: 03 September 2024

  • Accepted: 06 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02494-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing