Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Comprehensive characterization of nonlinear viscoelastic properties of arterial tissues using guided-wave optical coherence elastography
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Comprehensive characterization of nonlinear viscoelastic properties of arterial tissues using guided-wave optical coherence elastography

  • Yuxuan Jiang  ORCID: orcid.org/0000-0001-7660-80291 na1,
  • Guo-Yang Li  ORCID: orcid.org/0000-0002-5939-92931,2 na1,
  • Ruizhi Wang  ORCID: orcid.org/0009-0003-6618-17803,4 na1,
  • Xu Feng1,5 na1,
  • Yanhang Zhang3,6 &
  • …
  • Seok-Hyun Yun  ORCID: orcid.org/0000-0002-8903-59091,7 

Communications Physics , Article number:  (2026) Cite this article

  • 513 Accesses

  • 1 Citations

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biophotonics
  • Imaging and sensing

Abstract

The mechanical properties of arterial walls are critical for maintaining vascular function under pulsatile pressure and are closely linked to the development of cardiovascular diseases. Despite advances in imaging and elastography, comprehensive characterization of the complex mechanical behavior of arterial tissues remains challenging. Here, we present a broadband guided-wave optical coherence elastography (OCE) technique, grounded in viscoelasto-acoustic theory, for quantifying the nonlinear viscoelastic, anisotropic, and layer-specific properties of arterial walls with high spatial and temporal resolution. Our results reveal a strong stretch dependence of arterial viscoelasticity, with increasing prestress leading to a reduction in tissue viscosity. Under mechanical loading, the adventitia becomes significantly stiffer than the media, attributable to engagement of collagen fibers. Chemical degradation of collagen fibers highlighted their role in nonlinear viscoelasticity. This study demonstrates the potential of OCE as a powerful tool for detailed profiling of vascular biomechanics, with applications in basic research and future clinical diagnosis.

Similar content being viewed by others

Characterization of mechanical damage and viscoelasticity on aortas from guinea pigs subjected to hypoxia

Article Open access 18 April 2025

An inverse method for mechanical characterization of heterogeneous diseased arteries using intravascular imaging

Article Open access 18 November 2021

The role of vascular complexity on optimal junction exponents

Article Open access 08 March 2021

Data availability

The data that support the findings of this study are available from the authors on request.

Code availability

The custom code for the viscoelastic wave dispersion models is available from the authors on request.

References

  1. Sun, Z. Aging, arterial stiffness, and hypertension. Hypertension 65, 252–256 (2015).

    Google Scholar 

  2. Weber, T. et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 109, 184–189 (2004).

    Google Scholar 

  3. Kadoglou, N. P. et al. Arterial stiffness and novel biomarkers in patients with abdominal aortic aneurysms. Regul. Pept. 179, 50–54 (2012).

    Google Scholar 

  4. Cecelja, M. & Chowienczyk, P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc. Dis. 1, 1–10 (2012).

    Google Scholar 

  5. Weiss, D. et al. Mechanics-driven mechanobiological mechanisms of arterial tortuosity. Sci. Adv. 6, eabd3574 (2020).

    Google Scholar 

  6. Han, H.-C. Effects of material non-symmetry on the mechanical behavior of arterial wall. J. Mech. Behav. Biomed. Mater. 129, 105157 (2022).

    Google Scholar 

  7. Gilchrist, M., Murphy, J., Pierrat, B. & Saccomandi, G. Slight asymmetry in the winding angles of reinforcing collagen can cause large shear stresses in arteries and even induce buckling. Meccanica 52, 3417–3429 (2017).

    Google Scholar 

  8. Rajagopal, K., Bridges, C. & Rajagopal, K. Towards an understanding of the mechanics underlying aortic dissection. Biomech. Model. Mechanobiol. 6, 345–359 (2007).

    Google Scholar 

  9. Witzenburg, C. M. et al. Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. J. Biomech. Eng. 139, 031005 (2017).

    Google Scholar 

  10. FitzGibbon, B. & McGarry, P. Development of a test method to investigate mode II fracture and dissection of arteries. Acta Biomater 121, 444–460 (2021).

    Google Scholar 

  11. Lu, X., Yang, J., Zhao, J., Gregersen, H. & Kassab, G. Shear modulus of porcine coronary artery: contributions of media and adventitia. Am. J. Physiol. Heart Circul. Physiol. 285, H1966–H1975 (2003).

    Google Scholar 

  12. Stein, P. D., Hamid, M. S., Shivkumar, K., Davis, T. P., Khaia, F. & Henry, J. W. Effects of cyclic flexion of coronary arteries on progression of atherosclerosis. Am. J. Cardiol. 73, 431–437 (1994).

    Google Scholar 

  13. Van Epps, J. S. & Vorp, D. A. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion. J. Biomech. Eng. 130, 051001 (2008).

    Google Scholar 

  14. Holzapfel, G. A., Gasser, T. C. & Ogden, R. W. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000).

    Google Scholar 

  15. Wolinsky, H. & Glagov, S. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20, 99–111 (1967).

    Google Scholar 

  16. O’Connell, M. K. et al. The three-dimensional micro-and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol 27, 171–181 (2008).

    Google Scholar 

  17. Zou, Y. & Zhang, Y. An experimental and theoretical study on the anisotropy of elastin network. Ann. Biomed. Eng. 37, 1572–1583 (2009).

    Google Scholar 

  18. Chow, M.-J., Turcotte, R., Lin, C. P. & Zhang, Y. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys. J. 106, 2684–2692 (2014).

    Google Scholar 

  19. Hill, M. R., Duan, X., Gibson, G. A., Watkins, S. & Robertson, A. M. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall. J. Biomech. 45, 762–771 (2012).

    Google Scholar 

  20. Yu, X., Wang, Y. & Zhang, Y. Transmural variation in elastin fiber orientation distribution in the arterial wall. J. Mech. Behav. Biomed. Mater. 77, 745–753 (2018).

    Google Scholar 

  21. Jadidi, M. et al. Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 103, 172–188 (2020).

    Google Scholar 

  22. Wang, R., Mattson, J. M. & Zhang, Y. Effect of aging on the biaxial mechanical behavior of human descending thoracic aorta: Experiments and constitutive modeling considering collagen crosslinking. J. Mech. Behav. Biomed. Mater. 140, 105705 (2023).

    Google Scholar 

  23. Geest, J. P. V., Sacks, M. S. & Vorp, D. A. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39, 1324–1334 (2006).

    Google Scholar 

  24. Amabili, M., Asgari, M., Breslavsky, I. D., Franchini, G., Giovanniello, F. & Holzapfel, G. A. Microstructural and mechanical characterization of the layers of human descending thoracic aortas. Acta Biomater 134, 401–421 (2021).

    Google Scholar 

  25. Liu, X. et al. Progressive mechanical and structural changes in anterior cerebral arteries with Alzheimer’s disease. Alzheimers Res. Ther. 15, 185 (2023).

    Google Scholar 

  26. Gkousioudi, A., Razzoli, M., Moreira, J. D., Wainford, R. D. & Zhang, Y. Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension. Sci. Rep. 14, 495 (2024).

    Google Scholar 

  27. Sommer, G. et al. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes. J. Biomech. 49, 2374–2382 (2016).

    Google Scholar 

  28. Sacks, M. A method for planar biaxial mechanical testing that includes in-plane shear. J. Biomech. Eng. 121, 551–555 (1999).

    Google Scholar 

  29. Deng, S., Tomioka, J., Debes, J. & Fung, Y. New experiments on shear modulus of elasticity of arteries. Am. J. Physiol. Heart Circul. Physiol. 266, H1–H10 (1994).

    Google Scholar 

  30. Peterson, L. H., Jensen, R. E. & Parnell, J. Mechanical properties of arteries in vivo. Circ. Res. 8, 622–639 (1960).

    Google Scholar 

  31. Tardy, Y., Meister, J., Perret, F., Brunner, H. & Arditi, M. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin. Phys. Physiol. Meas. 12, 39 (1991).

    Google Scholar 

  32. Adji, A., O’rourke, M. F. & Namasivayam, M. Arterial stiffness, its assessment, prognostic value, and implications for treatment. Am. J. Hypertens. 24, 5–17 (2011).

    Google Scholar 

  33. Collaboration, R. V.fA. S. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors:‘establishing normal and reference values. Eur. Heart J. 31, 2338–2350 (2010).

    Google Scholar 

  34. Roccabianca, S., Figueroa, C., Tellides, G. & Humphrey, J. D. Quantification of regional differences in aortic stiffness in the aging human. J. Mech. Behav. Biomed. Mater. 29, 618–634 (2014).

    Google Scholar 

  35. Wilkinson, I. B. et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J. Hypertens. 16, 2079–2084 (1998).

    Google Scholar 

  36. Wilkinson, I. B. et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J. Am. Coll. Cardiol. 39, 1005–1011 (2002).

    Google Scholar 

  37. Wang, K.-L. et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: a community-based study. Hypertension 55, 799–805 (2010).

    Google Scholar 

  38. Milkovich, N., Gkousioudi, A., Seta, F., Suki, B. & Zhang, Y. Harmonic distortion of blood pressure waveform as a measure of arterial stiffness. Front. Bioeng. Biotechnol. 10, 842754 (2022).

    Google Scholar 

  39. Laurent, S. et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27, 2588–2605 (2006).

    Google Scholar 

  40. Fantin, F., Mattocks, A., Bulpitt, C. J., Banya, W. & Rajkumar, C. Is augmentation index a good measure of vascular stiffness in the elderly? Age Ageing 36, 43–48 (2007).

    Google Scholar 

  41. Marais, L. et al. Arterial stiffness assessment by shear wave elastography and ultrafast pulse wave imaging: comparison with reference techniques in normotensives and hypertensives. Ultrasound Med. Biol. 45, 758–772 (2019).

    Google Scholar 

  42. Segers, P., Rietzschel, E. R. & Chirinos, J. A. How to measure arterial stiffness in humans. Arterioscler. Thromb. Vasc. Biol. 40, 1034–1043 (2020).

    Google Scholar 

  43. Li, G.-Y., Jiang, Y., Zheng, Y., Xu, W., Zhang, Z. & Cao, Y. Arterial stiffness probed by dynamic ultrasound elastography characterizes waveform of blood pressure. IEEE Trans. Med. Imaging 41, 1510–1519 (2022).

    Google Scholar 

  44. Kenyhercz, W. E. et al. Quantification of aortic stiffness using magnetic resonance elastography: Measurement reproducibility, pulse wave velocity comparison, changes over cardiac cycle, and relationship with age. Magn. Reson. Med. 75, 1920–1926 (2016).

    Google Scholar 

  45. Zaitsev, V. Y. et al. Strain and elasticity imaging in compression optical coherence elastography: the two-decade perspective and recent advances. J. Biophotonics 14, e202000257 (2021).

    Google Scholar 

  46. Zvietcovich, F. & Larin, K. V. Wave-based optical coherence elastography: the 10-year perspective. Prog. Biomed. Eng. 4, 012007 (2022).

    Google Scholar 

  47. Liang, X. & Boppart, S. A. Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Trans. Biomed. Eng. 57, 953–959 (2009).

    Google Scholar 

  48. Feng, X., Li, G.-Y., Ramier, A., Eltony, A. M. & Yun, S.-H. In vivo stiffness measurement of epidermis, dermis, and hypodermis using broadband Rayleigh-wave optical coherence elastography. Acta Biomater 146, 295–305 (2022).

    Google Scholar 

  49. Li, G.-Y., Feng, X. & Yun, S.-H. In vivo optical coherence elastography unveils spatial variation of human corneal stiffness. IEEE Trans. Biomed. Eng. 71, 1418–1429 (2023).

    Google Scholar 

  50. Zvietcovich, F., Birkenfeld, J., Varea, A., Gonzalez, A. M., Curatolo, A. & Marcos, S. Multi-meridian wave-based corneal optical coherence elastography in normal and keratoconic patients. Investig. Ophthalmol. Vis. Sci. 63, 2380–A0183–2380–A0183 (2022).

    Google Scholar 

  51. Vinas-Pena, M., Feng, X., Li, G. -y & Yun, S.-H. In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography. Biomed. Opt. Express 13, 5434–5446 (2022).

    Google Scholar 

  52. Wang, T. et al. Intravascular optical coherence elastography. Biomed. Opt. Express 13, 5418–5433 (2022).

    Google Scholar 

  53. Li, G.-Y., Feng, X. & Yun, S.-H. Simultaneous tensile and shear measurement of the human cornea in vivo using S0-and A0-wave optical coherence elastography. Acta Biomater 175, 114–122 (2024).

    Google Scholar 

  54. Jiang, Y., Li, G.-Y., Zhang, Z., Ma, S., Cao, Y. & Yun, S.-H. Incremental dynamics of prestressed viscoelastic solids and its applications in shear wave elastography. Int. J. Eng. Sci. 215, 104310 (2025).

    Google Scholar 

  55. Ogden, R. W. Incremental statics and dynamics of pre-stressed elastic materials. In: Waves in Nonlinear Pre-stressed Materials (Springer, 2007).

  56. Craiem, D., Rojo, F. J., Atienza, J. M., Armentano, R. L. & Guinea, G. V. Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53, 4543 (2008).

    Google Scholar 

  57. Parker, K., Szabo, T. & Holm, S. Towards a consensus on rheological models for elastography in soft tissues. Phys. Med. Biol. 64, 215012 (2019).

    Google Scholar 

  58. Bonfanti, A., Kaplan, J. L., Charras, G. & Kabla, A. Fractional viscoelastic models for power-law materials. Soft Matter 16, 6002–6020 (2020).

    Google Scholar 

  59. Kiseleva, E. B. et al. Detecting emergence of ruptures in individual layers of the stretched intestinal wall using optical coherence elastography: a pilot study. J. Biophotonics 17, e202400086 (2024).

    Google Scholar 

  60. Zaitsev, V. Y. et al. Geophysics-inspired nonlinear stress–strain law for biological tissues and its applications in compression optical coherence elastography. Materials 17, 5023 (2024).

    Google Scholar 

  61. Sommer, G. & Holzapfel, G. A. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J. Mech. Behav. Biomed. Mater. 5, 116–128 (2012).

    Google Scholar 

  62. Giudici, A. & Spronck, B. The role of layer-specific residual stresses in arterial mechanics: analysis via a novel modelling framework. Artery Res. 28, 41–54 (2022).

    Google Scholar 

  63. Holzapfel, G. A. & Ogden, R. W. Modeling the biomechanical properties of soft biological tissues: constitutive theories. Eur. J. Mech. A Solids 112, 105634 (2025).

    Google Scholar 

  64. Nordsletten, D. et al. A viscoelastic model for human myocardium. Acta Biomater 135, 441–457 (2021).

    Google Scholar 

  65. Zhang, W., Jadidi, M., Razian, S. A., Holzapfel, G. A., Kamenskiy, A. & Nordsletten, D. A. A viscoelastic constitutive model for human femoropopliteal arteries. Acta Biomater 170, 68–85 (2023).

    Google Scholar 

  66. Zhang, W., Jadidi, M., Razian, S. A., Holzapfel, G. A., Kamenskiy, A. & Nordsletten, D. A. A viscoelastic constitutive framework for aging muscular and elastic arteries. Acta Biomater 188, 223–241 (2024).

    Google Scholar 

  67. Giudici, A. et al. Constituent-based quasi-linear viscoelasticity: a revised quasi-linear modelling framework to capture nonlinear viscoelasticity in arteries. Biomech. Model. Mechanobiol. 22, 1607–1623 (2023).

    Google Scholar 

  68. Trabelsi, O., Dumas, V., Breysse, E., Laroche, N. & Avril, S. In vitro histomechanical effects of enzymatic degradation in carotid arteries during inflation tests with pulsatile loading. J. Mech. Behav. Biomed. Mater. 103, 103550 (2020).

    Google Scholar 

  69. Beenakker, J.-W. M., Ashcroft, B. A., Lindeman, J. H. & Oosterkamp, T. H. Mechanical properties of the extracellular matrix of the aorta studied by enzymatic treatments. Biophys. J. 102, 1731–1737 (2012).

    Google Scholar 

  70. Li, R. et al. Multiscale analysis of equatorial sclera anisotropy: Revealing discrepancies in fiber orientation and mechanical properties. Sci. Adv. 11, eadp8631 (2025).

    Google Scholar 

  71. Quintanilla, F. H., Fan, Z., Lowe, M. & Craster, R. Guided waves’ dispersion curves in anisotropic viscoelastic single-and multi-layered media. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150268 (2015).

    Google Scholar 

  72. Couade, M. et al. Quantitative assessment of arterial wall biomechanical properties using shear wave imaging. Ultrasound Med. Biol. 36, 1662–1676 (2010).

    Google Scholar 

  73. Olender, M. L., Niu, Y., Marlevi, D., Edelman, E. R. & Nezami, F. R. Impact and implications of mixed plaque class in automated characterization of complex atherosclerotic lesions. Comput. Med. Imaging Graph. 97, 102051 (2022).

    Google Scholar 

  74. Bouma, B. E., Villiger, M., Otsuka, K. & Oh, W.-Y. Intravascular optical coherence tomography. Biomed. Opt. Express 8, 2660–2686 (2017).

    Google Scholar 

  75. Bouma, B. et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart 89, 317–320 (2003).

    Google Scholar 

  76. Liu, Y., Nezami, F. R. & Edelman, E. R. A Transformer-based pyramid network for coronary calcified plaque segmentation in intravascular optical coherence tomography images. Comput. Med. Imaging Graph. 113, 102347 (2024).

    Google Scholar 

  77. Liu, S., Meng, X., Wang, C., Ma, J., Fan, F. & Zhu, J. Handheld optical coherence tomography for tissue imaging: current design and medical applications. Appl. Spectrosc. Rev. 60, 292–316 (2025).

    Google Scholar 

  78. Li, G.-Y. et al. Guided waves in pre-stressed hyperelastic plates and tubes: Application to the ultrasound elastography of thin-walled soft materials. J. Mech. Phys. Solids 102, 67–79 (2017).

    Google Scholar 

  79. Destrade, M. Incremental equations for soft fibrous materials. In: Nonlinear Mechanics of Soft Fibrous Materials (Springer, 2015).

  80. Achenbach, J. Wave Propagation in Elastic Solids (Elsevier, 2012).

  81. Jiang, Y. et al. Simultaneous imaging of bidirectional guided waves probes arterial mechanical anisotropy, blood pressure, and stress synchronously. Sci. Adv. 11, eadv5660 (2025).

    Google Scholar 

  82. Gasser, T. C., Ogden, R. W. & Holzapfel, G. A. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006).

    Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the National Institutes of Health via grants R01-HL098028, R01-EY027653, and R01-EY033356.

Author information

Author notes
  1. These authors contributed equally: Yuxuan Jiang, Guo-Yang Li, Ruizhi Wang, Xu Feng.

Authors and Affiliations

  1. Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA

    Yuxuan Jiang, Guo-Yang Li, Xu Feng & Seok-Hyun Yun

  2. Currently with School of Mechanics and Engineering Science, Peking University, Beijing, China

    Guo-Yang Li

  3. Department of Mechanical Engineering, Boston University, Boston, MA, USA

    Ruizhi Wang & Yanhang Zhang

  4. Currently with Department of Biomedical Engineering, Yale University, New Haven, CT, USA

    Ruizhi Wang

  5. Currently with Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China

    Xu Feng

  6. Department of Biomedical Engineering, Boston University, Boston, MA, USA

    Yanhang Zhang

  7. Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA

    Seok-Hyun Yun

Authors
  1. Yuxuan Jiang
    View author publications

    Search author on:PubMed Google Scholar

  2. Guo-Yang Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Ruizhi Wang
    View author publications

    Search author on:PubMed Google Scholar

  4. Xu Feng
    View author publications

    Search author on:PubMed Google Scholar

  5. Yanhang Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Seok-Hyun Yun
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: Y.Z. and S.-H.Y. Methodology: Y.J., G.-Y.L., R.W, and S.-H.Y. Investigation: Y.J., G.-Y.L., R.W., X.F. and S.-H.Y. Visualization: Y.J., G.-Y.L., and S.-H.Y. Funding acquisition: Y.Z. and S.-H.Y. Project administration: Y.Z. and S.-H.Y. Supervision: Y.Z. and S.-H.Y. Writing—original draft: Y.J., G.-Y.L., R.W., X.F., Y.Z. and S.-H.Y. Writing—review & editing: Y.J., Y.Z. and S.-H.Y.

Corresponding authors

Correspondence to Yanhang Zhang or Seok-Hyun Yun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Runze Li, Fengyi Zhang, Vladimir Y. Zaitsev and Manmohan Singh for their contribution to the peer review of this work. [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary materials

Reporting summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Li, GY., Wang, R. et al. Comprehensive characterization of nonlinear viscoelastic properties of arterial tissues using guided-wave optical coherence elastography. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02502-0

Download citation

  • Received: 16 July 2025

  • Accepted: 08 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02502-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing