Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Ultralow radiative heat flux by Anderson localization in quasiperiodic plasmonic chains
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

Ultralow radiative heat flux by Anderson localization in quasiperiodic plasmonic chains

  • Yizhi Hu  ORCID: orcid.org/0009-0009-3291-86291,
  • Kun Yan1,
  • Wei-Hua Xiao1 &
  • …
  • Xiaobin Chen  ORCID: orcid.org/0000-0001-5761-50201,2 

Communications Physics , Article number:  (2026) Cite this article

  • 564 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Nanophotonics and plasmonics
  • Phase transitions and critical phenomena

Abstract

Anderson localization, arising from wave interference in disordered systems, profoundly hinders energy transport, yet its impact on radiative heat flux in many-body thermophotonic systems remains unclear. Here, we demonstrate a three-order-of-magnitude suppression of radiative heat transfer, resulting in ultralow radiative heat transfer, in a one-dimensional quasiperiodic chain of plasmonic nanoparticles. This suppression in radiative heat transfer is directly correlated with mode localization, as revealed by the mode decomposition of the transmission coefficient, which serves as evidence of Anderson localization. Furthermore, we elucidate the dependence of radiative thermal conductance reduction on interparticle spacing and material damping rates, uncovering the interplay between intrinsic Ohmic losses, mode localization, and long-range many-body interactions. Our findings advance the understanding of wave-mediated thermal transport in disordered photonic structures and suggest strategies for tailoring nanoscale heat management via engineered disorder.

Similar content being viewed by others

Transforming heat transfer with thermal metamaterials and devices

Article 12 March 2021

One-way heat transfer in deep-subwavelength thermal metaphotonics

Article Open access 03 September 2025

Observation of bulk quadrupole in topological heat transport

Article Open access 05 June 2023

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

Code availability

The codes that support the findings in this study are available from the corresponding author upon request.

References

  1. Yu, S., Qiu, C.-W., Chong, Y., Torquato, S. & Park, N. Engineered disorder in photonics. Nat. Rev. Mater. 6, 226 (2021).

    Google Scholar 

  2. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958).

    Google Scholar 

  3. De Raedt, H., Lagendijk, A. & de Vries, P. Transverse localization of light. Phys. Rev. Lett. 62, 47 (1989).

    Google Scholar 

  4. Schwartz, T., Bartal, G., Fishman, S. & Segev, M. Transport and anderson localization in disordered two-dimensional photonic lattices. Nature 446, 52 (2007).

    Google Scholar 

  5. Yamilov, A. et al. Anderson localization of electromagnetic waves in three dimensions. Nat. Phys. 19, 1308 (2023).

    Google Scholar 

  6. Condat, C. & Kirkpatrick, T. Resonant scattering and anderson localization of acoustic waves. Phys. Rev. B 36, 6782 (1987).

    Google Scholar 

  7. Arregui, G., Lanzillotti-Kimura, N. D., Sotomayor-Torres, C. M. & García, P. D. Anderson photon-phonon colocalization in certain random superlattices. Phys. Rev. Lett. 122, 043903 (2019).

    Google Scholar 

  8. Hu, Y., Xu, Y., Yan, K., Xiao, W.-H. & Chen, X. Exactly solvable mobility edges for phonons in one-dimensional quasiperiodic chains. Nano Lett. 25, 2219 (2025).

    Google Scholar 

  9. Hu, H., Strybulevych, A., Page, J., Skipetrov, S. E. & van Tiggelen, B. A. Localization of ultrasound in a three-dimensional elastic network. Nat. Phys. 4, 945 (2008).

    Google Scholar 

  10. Amir, A., Krich, J. J., Vitelli, V., Oreg, Y. & Imry, Y. Emergent percolation length and localization in random elastic networks. Phys. Rev. X 3, 021017 (2013).

    Google Scholar 

  11. Abraham, A. J., Malkov, S., Ljubetic, F. A., Durey, M. & Sáenz, P. J. Anderson localization of walking droplets. Phys. Rev. X 14, 031047 (2024).

    Google Scholar 

  12. Lahini, Y. et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett. 100, 013906 (2008).

    Google Scholar 

  13. Leonetti, M., Karbasi, S., Mafi, A. & Conti, C. Observation of migrating transverse anderson localizations of light in nonlocal media. Phys. Rev. Lett. 112, 193902 (2014).

    Google Scholar 

  14. Shi, W.-B. et al. Strong localization of surface plasmon polaritons with engineered disorder. Nano Lett. 18, 1896 (2018).

    Google Scholar 

  15. Conley, G. M., Burresi, M., Pratesi, F., Vynck, K. & Wiersma, D. S. Light transport and localization in two-dimensional correlated disorder. Phys. Rev. Lett. 112, 143901 (2014).

    Google Scholar 

  16. Lahini, Y. et al. Observation of a localization transition in quasiperiodic photonic lattices. Phys. Rev. Lett. 103, 013901 (2009).

    Google Scholar 

  17. Levi, L. et al. Disorder-enhanced transport in photonic quasicrystals. Science 332, 1541 (2011).

    Google Scholar 

  18. Jeon, S.-Y., Kwon, H. & Hur, K. Intrinsic photonic wave localization in a three-dimensional icosahedral quasicrystal. Nat. Phys. 13, 363 (2017).

    Google Scholar 

  19. Liu, J. et al. Random nanolasing in the anderson localized regime. Nat. Nanotechnol. 9, 285 (2014).

    Google Scholar 

  20. Hsu, C. W., Goetschy, A., Bromberg, Y., Stone, A. D. & Cao, H. Broadband coherent enhancement of transmission and absorption in disordered media. Phys. Rev. Lett. 115, 223901 (2015).

    Google Scholar 

  21. Yang, Y. et al. Tunable plasmonic system based on disordered palladium nanoparticles and its application to optical hydrogen sensors. ACS Mater. Lett. 7, 804 (2025).

    Google Scholar 

  22. Yang, X. et al. Hot spot engineering in hierarchical plasmonic nanostructures. Small 19, 2205659 (2023).

    Google Scholar 

  23. Howell, J. R., Mengüç, M. P., Daun, K., and Siegel, R. Thermal Radiation Heat Transfer (CRC press, 2020).

  24. Ottens, R. et al. Near-field radiative heat transfer between macroscopic planar surfaces. Phys. Rev. Lett. 107, 014301 (2011).

    Google Scholar 

  25. Song, B. et al. Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps. Nat. Nanotechnol. 11, 509 (2016).

    Google Scholar 

  26. Narayanaswamy, A. & Chen, G. Thermal near-field radiative transfer between two spheres. Phys. Rev. B 77, 075125 (2008).

    Google Scholar 

  27. Manjavacas, A. & García de Abajo, F. J. Radiative heat transfer between neighboring particles. Phys. Rev. B 86, 075466 (2012).

    Google Scholar 

  28. Yu, R., Manjavacas, A. & García de Abajo, F. J. Ultrafast radiative heat transfer. Nat. Commun. 8, 2 (2017).

    Google Scholar 

  29. Ramirez, F. V., Shen, S. & McGaughey, A. J. Near-field radiative heat transfer in graphene plasmonic nanodisk dimers. Phys. Rev. B 96, 165427 (2017).

    Google Scholar 

  30. Hu, Y., Li, H., Zhu, Y. & Yang, Y. Enhanced near-field radiative heat transport between graphene metasurfaces with symmetric nanopatterns. Phys. Rev. Appl. 14, 044054 (2020).

    Google Scholar 

  31. Cuevas, J. C. & García-Vidal, F. J. Radiative heat transfer. ACS Photonics 5, 3896 (2018).

    Google Scholar 

  32. Jouhara, H. et al. Waste heat recovery technologies and applications. Therm. Sci. Eng. Prog. 6, 268 (2018).

    Google Scholar 

  33. Zhao, B., Santhanam, P., Chen, K., Buddhiraju, S. & Fan, S. Near-field thermophotonic systems for low-grade waste-heat recovery. Nano Lett. 18, 5224 (2018).

    Google Scholar 

  34. Ahmed, S., Li, Z., Javed, M. S. & Ma, T. A review on the integration of radiative cooling and solar energy harvesting. Mater. Today Energy 21, 100776 (2021).

    Google Scholar 

  35. Fan, D. et al. Near-perfect photon utilization in an air-bridge thermophotovoltaic cell. Nature 586, 237 (2020).

    Google Scholar 

  36. Ben-Abdallah, P. & Biehs, S.-A. Phase-change radiative thermal diode. Appl. Phys. Lett. 103, 191907 (2013).

  37. Fiorino, A. et al. A thermal diode based on nanoscale thermal radiation. ACS Nano 12, 5774 (2018).

    Google Scholar 

  38. Guo, C., Zhao, B., Huang, D. & Fan, S. Radiative thermal router based on tunable magnetic weyl semimetals. ACS Photonics 7, 3257 (2020).

    Google Scholar 

  39. Biehs, S.-A. et al. Near-field radiative heat transfer in many-body systems. Rev. Mod. Phys. 93, 025009 (2021).

    Google Scholar 

  40. Liu, Z. et al. Topological thermal transport. Nat. Rev. Phys. 6, 554 (2024).

    Google Scholar 

  41. Zhu, L., Guo, Y. & Fan, S. Theory of many-body radiative heat transfer without the constraint of reciprocity. Phys. Rev. B 97, 094302 (2018).

    Google Scholar 

  42. Zheng, C. et al. Molding broadband dispersion in twisted trilayer hyperbolic polaritonic surfaces. ACS Nano 16, 13241 (2022).

    Google Scholar 

  43. Ben-Abdallah, P. et al. Heat superdiffusion in plasmonic nanostructure networks. Phys. Rev. Lett. 111, 174301 (2013).

    Google Scholar 

  44. Latella, I., Biehs, S.-A., Messina, R., Rodriguez, A. W. & Ben-Abdallah, P. Ballistic near-field heat transport in dense many-body systems. Phys. Rev. B 97, 035423 (2018).

    Google Scholar 

  45. Tervo, E., Francoeur, M., Cola, B. & Zhang, Z. Thermal radiation in systems of many dipoles. Phys. Rev. B 100, 205422 (2019).

    Google Scholar 

  46. Kathmann, C., Messina, R., Ben-Abdallah, P. & Biehs, S.-A. Limitations of kinetic theory to describe near-field heat exchanges in many-body systems. Phys. Rev. B 98, 115434 (2018).

    Google Scholar 

  47. Hu, Y., Yan, K. & Chen, X. Emergent mobility edges and intermediate phases in one-dimensional quasiperiodic plasmonic chains. Phys. Rev. Res. 6, 013322 (2024).

    Google Scholar 

  48. Freire-Fernández, F., Park, S.-M., Tan, M. J. & Odom, T. W. Plasmonic lattice lasers. Nat. Rev. Mater. 10, 604 (2025).

    Google Scholar 

  49. Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

    Google Scholar 

  50. Yan, Q. et al. Near-field imaging of synthetic dimensional integrated plasmonic topological harper nanochains. Nat. Commun. 16, 2592 (2025).

    Google Scholar 

  51. Liu, M. et al. Evolution and nonreciprocity of loss-induced topological phase singularity pairs. Phys. Rev. Lett. 127, 266101 (2021).

    Google Scholar 

  52. Palik, E. et al. Coupled surface magnetoplasmon-optic-phonon polariton modes on insb. Phys. Rev. B 13, 2497 (1976).

    Google Scholar 

  53. Moncada-Villa, E. & Cuevas, J. Near-field radiative heat transfer between one-dimensional magnetophotonic crystals. Phys. Rev. B 103, 075432 (2021).

    Google Scholar 

  54. Law, S., Liu, R., and Wasserman, D., Doped semiconductors with band-edge plasma frequencies. J. Vac. Sci. Technol. B 32, 052601 (2014).

  55. Biddle, J. & Das Sarma, S. Predicted mobility edges in one-dimensional incommensurate optical lattices: an exactly solvable model of anderson localization. Phys. Rev. Lett. 104, 070601 (2010).

    Google Scholar 

  56. Zundel, L., Cuartero-González, A., Sanders, S., Fernández-Domínguez, A. I. & Manjavacas, A. Green tensor analysis of lattice resonances in periodic arrays of nanoparticles. ACS Photonics 9, 540 (2022).

    Google Scholar 

  57. Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge University Press, 2012).

  58. Messina, R., Tschikin, M., Biehs, S.-A. & Ben-Abdallah, P. Fluctuation-electrodynamic theory and dynamics of heat transfer in systems of multiple dipoles. Phys. Rev. Bondensed Matter Mater. Phys. 88, 104307 (2013).

    Google Scholar 

  59. Chen, X., Liu, Y. & Duan, W. Thermal engineering in lowimensional quantum devices: A tutorial review of nonequilibrium green’s function methods. Small Methods 2, 1700343 (2018).

    Google Scholar 

  60. Chen, X., Xu, Y., Wang, J. & Guo, H. Valley filtering effect of phonons in graphene with a grain boundary. Phys. Rev. B 99, 064302 (2019).

    Google Scholar 

  61. Yan, K. et al. Giant tunneling magnetoresistance based on spin-valley-mismatched ferromagnetic metals. Phys. Rev. Lett. 134, 036302 (2025).

    Google Scholar 

  62. Ashida, Y., Gong, Z. & Ueda, M. Non-hermitian physics. Adv. Phys. 69, 249 (2020).

    Google Scholar 

  63. Ott, A., An, Z., Kittel, A. & Biehs, S.-A. Thermal near-field energy density and local density of states in topological one-dimensional su-schrieffer-heeger chains and two-dimensional su-schrieffer-heeger lattices of plasmonic nanoparticles. Phys. Rev. B 104, 165407 (2021).

    Google Scholar 

  64. Yang, S. et al. Non-hermitian thermophotonic funneling via nonreciprocal surface waves. Phys. Rev. Lett. 134, 196901 (2025).

    Google Scholar 

  65. Asheichyk, K. & Krüger, M. Radiative heat transfer with a cylindrical waveguide decays logarithmically slow. Phys. Rev. Lett. 129, 170605 (2022).

    Google Scholar 

  66. Wang, J. & Genack, A. Z. Transport through modes in random media. Nature 471, 345 (2011).

    Google Scholar 

  67. Skipetrov, S. E. & Sokolov, I. M. Absence of anderson localization of light in a random ensemble of point scatterers. Phys. Rev. Lett. 112, 023905 (2014).

    Google Scholar 

  68. Li, X., Li, X. & Das Sarma, S. Mobility edges in one-dimensional bichromatic incommensurate potentials. Phys. Rev. B 96, 085119 (2017).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Shenzhen Science and Technology Program (grant nos. RCYX20221008092848063, JCYJ20241202123733043, and JCYJ20241202123506009) and the National Natural Science Foundation of China (grant nos. 12574256 and 12447144).

Author information

Authors and Affiliations

  1. School of Science, State Key Laboratory on Tunable laser Technology and Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, China

    Yizhi Hu, Kun Yan, Wei-Hua Xiao & Xiaobin Chen

  2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China

    Xiaobin Chen

Authors
  1. Yizhi Hu
    View author publications

    Search author on:PubMed Google Scholar

  2. Kun Yan
    View author publications

    Search author on:PubMed Google Scholar

  3. Wei-Hua Xiao
    View author publications

    Search author on:PubMed Google Scholar

  4. Xiaobin Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.H. contributed to conceptualization, methodology, data analysis, visualization, writing, and manuscript revision. K.Y. and W.-H.X. contributed to the discussions of the results. X.C. led the project and contributed to project administration, supervision, writing review and editing, and funding acquisition. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Xiaobin Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Ilkka Tittonen, Philippe Ben-Abdallah, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Yan, K., Xiao, WH. et al. Ultralow radiative heat flux by Anderson localization in quasiperiodic plasmonic chains. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02506-w

Download citation

  • Received: 03 June 2025

  • Accepted: 13 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02506-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing