Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
One-milligram torsional pendulum toward experiments at the quantum-gravity interface
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 30 January 2026

One-milligram torsional pendulum toward experiments at the quantum-gravity interface

  • Sofia Agafonova  ORCID: orcid.org/0000-0003-0582-29461,
  • Pere Rosselló1,
  • Manuel Mekonnen  ORCID: orcid.org/0009-0008-2989-30211 &
  • …
  • Onur Hosten  ORCID: orcid.org/0000-0002-2031-204X1 

Communications Physics , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • General relativity and gravity
  • Imaging and sensing
  • Optomechanics
  • Quantum mechanics

Abstract

Probing the possibility of entanglement generation through gravity offers a path to tackle the question of whether gravitational fields possess a quantum mechanical nature. A potential realization necessitates systems with low-frequency dynamics at an optimal mass scale, for which the microgram-to-milligram range is a strong contender. Here, after refining a figure-of-merit for the problem, we present a 1-milligram torsional pendulum operating at 18 Hz. We demonstrate laser cooling its motion from room temperature to 240 microkelvins, surpassing by over 20-fold the coldest motions attained for oscillators ranging from micrograms to kilograms. We quantify and contrast the utility of the current approach with other platforms. The achieved performance and large improvement potential highlight milligram-scale torsional pendulums as a powerful platform for precision measurements relevant to future studies at the quantum-gravity interface.

Data availability

The numerical source data, as well as datasets generated during and/or analyzed during this study, are available in ISTA Research Explorer https://research-explorer.ista.ac.at/record/20842.

References

  1. Großardt, A. Three little paradoxes: making sense of semiclassical gravity. AVS Quantum Sci. 4, 010502 (2022).

    Google Scholar 

  2. Oppenheim, J. A postquantum theory of classical gravity?. Phys. Rev. X 13, 041040 (2023).

    Google Scholar 

  3. Bose, S. et al. Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).

    Google Scholar 

  4. Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).

    Google Scholar 

  5. Kafri, D. & Taylor, J. M. A noise inequality for classical forces. https://arxiv.org/abs/1311.4558 (2013).

  6. Bose, S. et al. Massive quantum systems as interfaces of quantum mechanics and gravity. Rev. Mod. Phys. 97, 015003 (2025).

    Google Scholar 

  7. DeWitt, C. M. & Rickles, D. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference. Sources of Max Planck Research Library for the History and Development of Knowledge; Sources 5 (Edition Open Access, Berlin, 2011).

  8. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    Google Scholar 

  9. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Google Scholar 

  10. Corbitt, T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mk. Phys. Rev. Lett. 99, 160801 (2007).

    Google Scholar 

  11. Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021).

    Google Scholar 

  12. Fuchs, T. M. et al. Measuring gravity with milligram levitated masses. Sci. Adv. 10, 2949 (2024).

    Google Scholar 

  13. Cataño-Lopez, S. B., Santiago-Condori, J. G., Edamatsu, K. & Matsumoto, N. High-q milligram-scale monolithic pendulum for quantum-limited gravity measurements. Phys. Rev. Lett. 124, 221102 (2020).

    Google Scholar 

  14. Matsumoto, N. et al. Demonstration of displacement sensing of a mg-scale pendulum for mm- and mg-scale gravity measurements. Phys. Rev. Lett. 122, 071101 (2019).

    Google Scholar 

  15. Hofer, J. et al. High-q magnetic levitation and control of superconducting microspheres at millikelvin temperatures. Phys. Rev. Lett. 131, 043603 (2023).

    Google Scholar 

  16. Kawasaki, T., Komori, K., Fujimoto, H., Michimura, Y. & Ando, M. Angular trapping of a linear-cavity mirror with an optical torsional spring. Phys. Rev. A 106, 013514 (2022).

    Google Scholar 

  17. Komori, K. et al. Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum. Phys. Rev. A 101, 011802 (2020).

    Google Scholar 

  18. Raut, N. K., Miller, J., Pate, J., Chiao, R. & Sharping, J. E. Meissner levitation of a millimeter-size neodymium magnet within a superconducting radio frequency cavity. IEEE Trans. Appl. Supercond. 31, 1–4 (2021).

    Google Scholar 

  19. Agatsuma, K. et al. Precise measurement of laser power using an optomechanical system. Opt. Express 22, 2013–2030 (2014).

    Google Scholar 

  20. Michimura, Y. & Komori, K. Quantum sensing with milligram scale optomechanical systems. Eur. Phys. J. D. 74, 126 (2020).

    Google Scholar 

  21. Shin, D.-C., Hayward, T. M., Fife, D., Menon, R. & Sudhir, V. Active laser cooling of a centimeter-scale torsional oscillator. Optica 12, 473–478 (2025).

    Google Scholar 

  22. Pluchar, C. M., Agrawal, A. R. & Wilson, D. J. Quantum-limited optical lever measurement of a torsion oscillator. Optica 12, 418–423 (2025).

    Google Scholar 

  23. Aspelmeyer, M. When Zeh Meets Feynman: How to Avoid the Appearance of a Classical World in Gravity Experiments (Springer, 2022).

  24. Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).

    Google Scholar 

  25. Müller-Ebhardt, H., Rehbein, H., Schnabel, R., Danzmann, K. & Chen, Y. Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008).

    Google Scholar 

  26. Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).

    Google Scholar 

  27. Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).

    Google Scholar 

  28. Diósi, L. Testing spontaneous wave-function collapse models on classical mechanical oscillators. Phys. Rev. Lett. 114, 050403 (2015).

    Google Scholar 

  29. Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol. 6, 024002 (2021).

    Google Scholar 

  30. Qvarfort, S., Rätzel, D. & Stopyra, S. Constraining modified gravity with quantum optomechanics. N. J. Phys. 24, 033009 (2022).

    Google Scholar 

  31. Timberlake, C., Vinante, A., Shankar, F., Lapi, A. & Ulbricht, H. Probing modified gravity with magnetically levitated resonators. Phys. Rev. D. 104, 101101 (2021).

    Google Scholar 

  32. Al Balushi, A., Cong, W. & Mann, R. B. Optomechanical quantum cavendish experiment. Phys. Rev. A 98, 043811 (2018).

    Google Scholar 

  33. Krisnanda, T., Tham, G. Y., Paternostro, M. & Paterek, T. Observable quantum entanglement due to gravity. npj Quantum Inf. 6, 12 (2020).

    Google Scholar 

  34. Weiss, T., Roda-Llordes, M., Torrontegui, E., Aspelmeyer, M. & Romero-Isart, O. Large quantum delocalization of a levitated nanoparticle using optimal control: applications for force sensing and entangling via weak forces. Phys. Rev. Lett. 127, 023601 (2021).

    Google Scholar 

  35. Miao, H., Martynov, D., Yang, H. & Datta, A. Quantum correlations of light mediated by gravity. Phys. Rev. A 101, 063804 (2020).

    Google Scholar 

  36. Miki, D., Matsumura, A. & Yamamoto, K. Feasible generation of gravity-induced entanglement by using optomechanical systems. Phys. Rev. D. 110, 024057 (2024).

    Google Scholar 

  37. Bengyat, O., Di Biagio, A., Aspelmeyer, M. & Christodoulou, M. Gravity-mediated entanglement between oscillators as quantum superposition of geometries. Phys. Rev. D. 110, 056046 (2024).

    Google Scholar 

  38. Huyet, G., Franke-Arnold, S. & Barnett, S. M. Superposition states at finite temperature. Phys. Rev. A 63, 043812 (2001).

    Google Scholar 

  39. Angeli, O. et al. Probing the quantum nature of gravity through classical diffusion. Preprint at https://arxiv.org/abs/2501.13030 (2025).

  40. Oppenheim, J., Sparaciari, C., Šoda, B. & Weller-Davies, Z. Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity. Nat. Commun. 14, 7910 (2023).

    Google Scholar 

  41. Kryhin, S. & Sudhir, V. Distinguishable consequence of classical gravity on quantum matter. Phys. Rev. Lett. 134, 061501 (2025).

    Google Scholar 

  42. Blencowe, M. P. Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013).

    Google Scholar 

  43. Datta, A. & Miao, H. Signatures of the quantum nature of gravity in the differential motion of two masses. Quantum Sci. Technol. 6, 045014 (2021).

    Google Scholar 

  44. Miki, D. et al. Generating quantum entanglement between macroscopic objects with continuous measurement and feedback control. Phys. Rev. A 107, 032410 (2023).

    Google Scholar 

  45. Matsumoto, N., Komori, K., Ito, S., Michimura, Y. & Aso, Y. Direct measurement of optical-trap-induced decoherence. Phys. Rev. A 94, 033822 (2016).

    Google Scholar 

  46. Gretarsson, A. M. & Harry, G. M. Dissipation of mechanical energy in fused silica fibers. Rev. Sci. Instrum. 70, 4081–4087 (1999).

    Google Scholar 

  47. Komori, K., Ďurovčíková, D. & Sudhir, V. Quantum theory of feedback cooling of an anelastic macromechanical oscillator. Phys. Rev. A 105, 043520 (2022).

    Google Scholar 

  48. Whittle, C. et al. Approaching the motional ground state of a 10-kg object. Science 372, 1333–1336 (2021).

    Google Scholar 

  49. Hite, D., McKay, K. & Pappas, D. P. Surface science motivated by heating of trapped ions from the quantum ground state. N. J. Phys. 23, 103028 (2021).

    Google Scholar 

  50. Lee, J., Adelberger, E., Cook, T., Fleischer, S. & Heckel, B. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).

    Google Scholar 

  51. Blakemore, C. P. et al. Search for non-Newtonian interactions at micrometer scale with a levitated test mass. Phys. Rev. D. 104, 061101 (2021).

    Google Scholar 

  52. Tebbenjohanns, F. et al. Feedback cooling the fundamental torsional mechanical mode of a tapered optical fiber to 30 mk. Phys. Rev. A 108, 031101 (2023).

    Google Scholar 

  53. Agafonova, S., Mishra, U., Diorico, F. & Hosten, O. Zigzag optical cavity for sensing and controlling torsional motion. Phys. Rev. Res. 6, 013141 (2024).

    Google Scholar 

  54. Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372, 622–625 (2021).

    Google Scholar 

  55. Pratt, J. R. et al. Nanoscale torsional dissipation dilution for quantum experiments and precision measurement. Phys. Rev. X 13, 011018 (2023).

    Google Scholar 

  56. Rossi, M. et al. Quantum delocalization of a levitated nanoparticle. Phys. Rev. Lett. 135, 083601 (2025).

    Google Scholar 

  57. Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).

    Google Scholar 

  58. Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).

    Google Scholar 

  59. Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).

    Google Scholar 

  60. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    Google Scholar 

  61. Zoepfl, D. et al. Kerr enhanced backaction cooling in magnetomechanics. Phys. Rev. Lett. 130, 033601 (2023).

    Google Scholar 

  62. Underwood, M. et al. Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime. Phys. Rev. A 92, 061801 (2015).

    Google Scholar 

  63. Bild, M. et al. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 380, 274–278 (2023).

    Google Scholar 

  64. Vinante, A. et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Phys. Rev. Lett. 101, 033601 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank Gerard Higgins, Andrei Militaru, Nikolai Kiesel, and Markus Aspelmeyer for useful discussions on the topic of the figure-of-merit. We thank Teodor Strömberg for helping with the additional characterizations of the optical lever noise. We thank Johannes Fink and Scott Waitukaitis for their helpful feedback on the manuscript. This work was supported by Institute of Science and Technology Austria and the European Research Council under Grant No. 101087907 (ERC CoG QuHAMP).

Author information

Authors and Affiliations

  1. Institute of Science and Technology Austria, Klosterneuburg, Austria

    Sofia Agafonova, Pere Rosselló, Manuel Mekonnen & Onur Hosten

Authors
  1. Sofia Agafonova
    View author publications

    Search author on:PubMed Google Scholar

  2. Pere Rosselló
    View author publications

    Search author on:PubMed Google Scholar

  3. Manuel Mekonnen
    View author publications

    Search author on:PubMed Google Scholar

  4. Onur Hosten
    View author publications

    Search author on:PubMed Google Scholar

Contributions

O.H. conceived the experiment and supervised the project. M.M. manufactured the pendulum. S.A. and P.R. built the experimental setup. S.A. and O.H. performed the reported experiments, analyzed the data, and wrote the article.

Corresponding author

Correspondence to Onur Hosten.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Vivishek Sudhir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonova, S., Rosselló, P., Mekonnen, M. et al. One-milligram torsional pendulum toward experiments at the quantum-gravity interface. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02514-w

Download citation

  • Received: 23 May 2025

  • Accepted: 14 January 2026

  • Published: 30 January 2026

  • DOI: https://doi.org/10.1038/s42005-026-02514-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing