Abstract
Probing the possibility of entanglement generation through gravity offers a path to tackle the question of whether gravitational fields possess a quantum mechanical nature. A potential realization necessitates systems with low-frequency dynamics at an optimal mass scale, for which the microgram-to-milligram range is a strong contender. Here, after refining a figure-of-merit for the problem, we present a 1-milligram torsional pendulum operating at 18 Hz. We demonstrate laser cooling its motion from room temperature to 240 microkelvins, surpassing by over 20-fold the coldest motions attained for oscillators ranging from micrograms to kilograms. We quantify and contrast the utility of the current approach with other platforms. The achieved performance and large improvement potential highlight milligram-scale torsional pendulums as a powerful platform for precision measurements relevant to future studies at the quantum-gravity interface.
Data availability
The numerical source data, as well as datasets generated during and/or analyzed during this study, are available in ISTA Research Explorer https://research-explorer.ista.ac.at/record/20842.
References
Großardt, A. Three little paradoxes: making sense of semiclassical gravity. AVS Quantum Sci. 4, 010502 (2022).
Oppenheim, J. A postquantum theory of classical gravity?. Phys. Rev. X 13, 041040 (2023).
Bose, S. et al. Spin entanglement witness for quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).
Marletto, C. & Vedral, V. Gravitationally induced entanglement between two massive particles is sufficient evidence of quantum effects in gravity. Phys. Rev. Lett. 119, 240402 (2017).
Kafri, D. & Taylor, J. M. A noise inequality for classical forces. https://arxiv.org/abs/1311.4558 (2013).
Bose, S. et al. Massive quantum systems as interfaces of quantum mechanics and gravity. Rev. Mod. Phys. 97, 015003 (2025).
DeWitt, C. M. & Rickles, D. The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference. Sources of Max Planck Research Library for the History and Development of Knowledge; Sources 5 (Edition Open Access, Berlin, 2011).
Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Corbitt, T. et al. Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mk. Phys. Rev. Lett. 99, 160801 (2007).
Westphal, T., Hepach, H., Pfaff, J. & Aspelmeyer, M. Measurement of gravitational coupling between millimetre-sized masses. Nature 591, 225–228 (2021).
Fuchs, T. M. et al. Measuring gravity with milligram levitated masses. Sci. Adv. 10, 2949 (2024).
Cataño-Lopez, S. B., Santiago-Condori, J. G., Edamatsu, K. & Matsumoto, N. High-q milligram-scale monolithic pendulum for quantum-limited gravity measurements. Phys. Rev. Lett. 124, 221102 (2020).
Matsumoto, N. et al. Demonstration of displacement sensing of a mg-scale pendulum for mm- and mg-scale gravity measurements. Phys. Rev. Lett. 122, 071101 (2019).
Hofer, J. et al. High-q magnetic levitation and control of superconducting microspheres at millikelvin temperatures. Phys. Rev. Lett. 131, 043603 (2023).
Kawasaki, T., Komori, K., Fujimoto, H., Michimura, Y. & Ando, M. Angular trapping of a linear-cavity mirror with an optical torsional spring. Phys. Rev. A 106, 013514 (2022).
Komori, K. et al. Attonewton-meter torque sensing with a macroscopic optomechanical torsion pendulum. Phys. Rev. A 101, 011802 (2020).
Raut, N. K., Miller, J., Pate, J., Chiao, R. & Sharping, J. E. Meissner levitation of a millimeter-size neodymium magnet within a superconducting radio frequency cavity. IEEE Trans. Appl. Supercond. 31, 1–4 (2021).
Agatsuma, K. et al. Precise measurement of laser power using an optomechanical system. Opt. Express 22, 2013–2030 (2014).
Michimura, Y. & Komori, K. Quantum sensing with milligram scale optomechanical systems. Eur. Phys. J. D. 74, 126 (2020).
Shin, D.-C., Hayward, T. M., Fife, D., Menon, R. & Sudhir, V. Active laser cooling of a centimeter-scale torsional oscillator. Optica 12, 473–478 (2025).
Pluchar, C. M., Agrawal, A. R. & Wilson, D. J. Quantum-limited optical lever measurement of a torsion oscillator. Optica 12, 418–423 (2025).
Aspelmeyer, M. When Zeh Meets Feynman: How to Avoid the Appearance of a Classical World in Gravity Experiments (Springer, 2022).
Vitali, D. et al. Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007).
Müller-Ebhardt, H., Rehbein, H., Schnabel, R., Danzmann, K. & Chen, Y. Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008).
Bose, S., Jacobs, K. & Knight, P. L. Scheme to probe the decoherence of a macroscopic object. Phys. Rev. A 59, 3204–3210 (1999).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
Diósi, L. Testing spontaneous wave-function collapse models on classical mechanical oscillators. Phys. Rev. Lett. 114, 050403 (2015).
Carney, D. et al. Mechanical quantum sensing in the search for dark matter. Quantum Sci. Technol. 6, 024002 (2021).
Qvarfort, S., Rätzel, D. & Stopyra, S. Constraining modified gravity with quantum optomechanics. N. J. Phys. 24, 033009 (2022).
Timberlake, C., Vinante, A., Shankar, F., Lapi, A. & Ulbricht, H. Probing modified gravity with magnetically levitated resonators. Phys. Rev. D. 104, 101101 (2021).
Al Balushi, A., Cong, W. & Mann, R. B. Optomechanical quantum cavendish experiment. Phys. Rev. A 98, 043811 (2018).
Krisnanda, T., Tham, G. Y., Paternostro, M. & Paterek, T. Observable quantum entanglement due to gravity. npj Quantum Inf. 6, 12 (2020).
Weiss, T., Roda-Llordes, M., Torrontegui, E., Aspelmeyer, M. & Romero-Isart, O. Large quantum delocalization of a levitated nanoparticle using optimal control: applications for force sensing and entangling via weak forces. Phys. Rev. Lett. 127, 023601 (2021).
Miao, H., Martynov, D., Yang, H. & Datta, A. Quantum correlations of light mediated by gravity. Phys. Rev. A 101, 063804 (2020).
Miki, D., Matsumura, A. & Yamamoto, K. Feasible generation of gravity-induced entanglement by using optomechanical systems. Phys. Rev. D. 110, 024057 (2024).
Bengyat, O., Di Biagio, A., Aspelmeyer, M. & Christodoulou, M. Gravity-mediated entanglement between oscillators as quantum superposition of geometries. Phys. Rev. D. 110, 056046 (2024).
Huyet, G., Franke-Arnold, S. & Barnett, S. M. Superposition states at finite temperature. Phys. Rev. A 63, 043812 (2001).
Angeli, O. et al. Probing the quantum nature of gravity through classical diffusion. Preprint at https://arxiv.org/abs/2501.13030 (2025).
Oppenheim, J., Sparaciari, C., Šoda, B. & Weller-Davies, Z. Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity. Nat. Commun. 14, 7910 (2023).
Kryhin, S. & Sudhir, V. Distinguishable consequence of classical gravity on quantum matter. Phys. Rev. Lett. 134, 061501 (2025).
Blencowe, M. P. Effective field theory approach to gravitationally induced decoherence. Phys. Rev. Lett. 111, 021302 (2013).
Datta, A. & Miao, H. Signatures of the quantum nature of gravity in the differential motion of two masses. Quantum Sci. Technol. 6, 045014 (2021).
Miki, D. et al. Generating quantum entanglement between macroscopic objects with continuous measurement and feedback control. Phys. Rev. A 107, 032410 (2023).
Matsumoto, N., Komori, K., Ito, S., Michimura, Y. & Aso, Y. Direct measurement of optical-trap-induced decoherence. Phys. Rev. A 94, 033822 (2016).
Gretarsson, A. M. & Harry, G. M. Dissipation of mechanical energy in fused silica fibers. Rev. Sci. Instrum. 70, 4081–4087 (1999).
Komori, K., Ďurovčíková, D. & Sudhir, V. Quantum theory of feedback cooling of an anelastic macromechanical oscillator. Phys. Rev. A 105, 043520 (2022).
Whittle, C. et al. Approaching the motional ground state of a 10-kg object. Science 372, 1333–1336 (2021).
Hite, D., McKay, K. & Pappas, D. P. Surface science motivated by heating of trapped ions from the quantum ground state. N. J. Phys. 23, 103028 (2021).
Lee, J., Adelberger, E., Cook, T., Fleischer, S. & Heckel, B. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 124, 101101 (2020).
Blakemore, C. P. et al. Search for non-Newtonian interactions at micrometer scale with a levitated test mass. Phys. Rev. D. 104, 061101 (2021).
Tebbenjohanns, F. et al. Feedback cooling the fundamental torsional mechanical mode of a tapered optical fiber to 30 mk. Phys. Rev. A 108, 031101 (2023).
Agafonova, S., Mishra, U., Diorico, F. & Hosten, O. Zigzag optical cavity for sensing and controlling torsional motion. Phys. Rev. Res. 6, 013141 (2024).
Kotler, S. et al. Direct observation of deterministic macroscopic entanglement. Science 372, 622–625 (2021).
Pratt, J. R. et al. Nanoscale torsional dissipation dilution for quantum experiments and precision measurement. Phys. Rev. X 13, 011018 (2023).
Rossi, M. et al. Quantum delocalization of a levitated nanoparticle. Phys. Rev. Lett. 135, 083601 (2025).
Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892–895 (2020).
Wilson, D. J. et al. Measurement-based control of a mechanical oscillator at its thermal decoherence rate. Nature 524, 325–329 (2015).
Monteiro, F. et al. Force and acceleration sensing with optically levitated nanogram masses at microkelvin temperatures. Phys. Rev. A 101, 053835 (2020).
Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).
Zoepfl, D. et al. Kerr enhanced backaction cooling in magnetomechanics. Phys. Rev. Lett. 130, 033601 (2023).
Underwood, M. et al. Measurement of the motional sidebands of a nanogram-scale oscillator in the quantum regime. Phys. Rev. A 92, 061801 (2015).
Bild, M. et al. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 380, 274–278 (2023).
Vinante, A. et al. Feedback cooling of the normal modes of a massive electromechanical system to submillikelvin temperature. Phys. Rev. Lett. 101, 033601 (2008).
Acknowledgements
We thank Gerard Higgins, Andrei Militaru, Nikolai Kiesel, and Markus Aspelmeyer for useful discussions on the topic of the figure-of-merit. We thank Teodor Strömberg for helping with the additional characterizations of the optical lever noise. We thank Johannes Fink and Scott Waitukaitis for their helpful feedback on the manuscript. This work was supported by Institute of Science and Technology Austria and the European Research Council under Grant No. 101087907 (ERC CoG QuHAMP).
Author information
Authors and Affiliations
Contributions
O.H. conceived the experiment and supervised the project. M.M. manufactured the pendulum. S.A. and P.R. built the experimental setup. S.A. and O.H. performed the reported experiments, analyzed the data, and wrote the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Physics thanks Vivishek Sudhir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Agafonova, S., Rosselló, P., Mekonnen, M. et al. One-milligram torsional pendulum toward experiments at the quantum-gravity interface. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02514-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005-026-02514-w