Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Probing Earth’s missing potassium using the antimatter signature of geoneutrinos
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 February 2026

Probing Earth’s missing potassium using the antimatter signature of geoneutrinos

  • LiquidO Collaboration

Communications Physics , Article number:  (2026) Cite this article

  • 172 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Characterization and analytical techniques
  • Experimental particle physics

Abstract

Puzzles exist in our theories of Earth’s formation and bulk chemical composition. Related to these questions is our incomplete knowledge of the planet’s overall heat budget and thermal history. The successful observation of geoneutrinos originating from uranium and thorium decay chains, manifestations of the planet’s natural radioactivity, serves as the only direct probe of Earth’s internal, radiogenic heat engine so far. Intriguingly, potassium (40K) geoneutrinos have never been observed and have so far been considered impractical to measure despite their importance in Earth’s radioactive inventory. We propose here an approach for potassium geoneutrino detection that exploits their antiparticle nature. The detection framework relies on the LiquidO technique to identify positrons, thereby reducing otherwise overwhelming backgrounds. Antineutrino interactions with candidate isotope targets have been thoroughly examined and copper is found to be the ideal isotope able to meet all experimental feasibility conditions. We discuss the challenging experimental requirements to yield a potassium geoneutrino discovery.

Similar content being viewed by others

Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation

Article 12 June 2023

Engineered mineralogical interfaces as radionuclide repositories

Article Open access 06 February 2023

Radioactivity and geochemical characteristics of cryoconite on the Tien Shan glacier

Article Open access 14 October 2025

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. McDonough, W. F. & Sun, S. -S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Google Scholar 

  2. Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).

    Google Scholar 

  3. McDonough, W. F., Šrámek, O. & Wipperfurth, S. A. Radiogenic power and geoneutrino luminosity of the earth and other terrestrial bodies through time. Geochem. Geophys. Geosyst. 21, e2019GC008865 (2020).

    Google Scholar 

  4. Arevalo, R. et al. Simplified mantle architecture and distribution of radiogenic power. Geochem. Geophys. Geosyst. 14, 2265–2285 (2013).

    Google Scholar 

  5. Goettel, K. A. Models for the origin and composition of the Earth, and the hypothesis of potassium in the Earth’s core. Geophys. Surv. 2, 369–397 (1976).

    Google Scholar 

  6. Lassiter, J. C. Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the “missing argon” problem. Geochem. Geophys. Geosyst. 5, Q11012 (2004).

  7. Allègre, C. J., Hofmann, A. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).

    Google Scholar 

  8. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).

    Google Scholar 

  9. Fiorentini, G., Lissia, M. & Mantovani, F. Geo-neutrinos and Earth’s interior. Phys. Rep. 453, 117–172 (2007).

    Google Scholar 

  10. Raghavan, R. S. et al. Measuring the global radioactivity in the Earth by multidetector antineutrino spectroscopy. Phys. Rev. Lett. 80, 635 (1998).

    Google Scholar 

  11. Rothschild, C. G., Chen, M. C. & Calaprice, F. P. Antineutrino geophysics with liquid scintillator detectors. Geophys. Res. Lett. 25, 1083–1086 (1998).

    Google Scholar 

  12. KamLAND Collaboration. Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005).

  13. Agostini, M. et al. Spectroscopy of geoneutrinos from 2056 days of Borexino data. Phys. Rev. D 92, 031101 (2015).

    Google Scholar 

  14. Agostini, M. et al. Comprehensive geoneutrino analysis with Borexino. Phys. Rev. D 101, 012009 (2020).

    Google Scholar 

  15. Albanese, V. et al. The SNO+ experiment. J. Instrum. 16, P08059 (2021).

    Google Scholar 

  16. An, F. et al. Neutrino physics with JUNO. J. Phys. G Nucl. Part. Phys. 43, 030401 (2016).

    Google Scholar 

  17. Leyton, M., Dye, S. & Monroe, J. Exploring the hidden interior of the Earth with directional Neutrino measurements. Nat. Commun. 8, 15989 (2017).

    Google Scholar 

  18. Wang, Z. & Chen, S. Hunting potassium geoneutrinos with liquid scintillator Cherenkov Neutrino detectors. Chin. Phys. C 44, 033001 (2020).

    Google Scholar 

  19. Benziger, J. et al. A scintillator purification system for the Borexino solar Neutrino detector. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 587, 277–291 (2008).

    Google Scholar 

  20. Cowan, C. L. et al. Detection of the free neutrino: a confirmation. Science 124, 103–104 (1956).

    Google Scholar 

  21. Abreu, Y. et al. SoLid: a short baseline reactor Neutrino experiment. J. Instrum. 16, P02025 (2021).

    Google Scholar 

  22. Krauss, L. M., Glashow, S. L. & Schramm, D. N. Antineutrino astronomy and geophysics. Nature 310, 191–198 (1984).

    Google Scholar 

  23. Chen, M. Potassium Geo-neutrino Detection. as presented at Neutrino Geophysics 2005, Honolulu, HI, USA (2005).

  24. Cabrera, A. et al. Neutrino physics with an opaque detector. Commun. Phys. 4, 273 (2021).

    Google Scholar 

  25. Schoppmann, S. Review of novel approaches to organic liquid scintillators in neutrino physics. Symmetry 15, 11 (2023).

  26. Apilluelo, J. et al. The stochastic light confinement of LiquidO. Preprint at arXiv https://doi.org/10.48550/arXiv.2503.02541 (2025).

  27. Cabrera, A. & LPET-Otech Collaboration, Novel positron emission tomography with opaque liquid scintillator detection technology. In Proc. 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (NSS-MIC-IEEE) (IEEE,2022).

  28. Honda, M. et al. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D 92, 023004 (2015).

    Google Scholar 

  29. Bellini, G. et al. Geoneutrinos and geoscience: an intriguing joint-venture. Riv. Nuovo Cim. 45, 1–105 (2022).

  30. Abe, S. et al. Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND. Phys. Rev. C 107, 054612 (2023).

    Google Scholar 

  31. Berger, M. et al. XCOM: photon cross sections database: NIST standard reference database 8 (NIST, 2013).

  32. Karshenboim, S. G. Precision study of positronium: testing bound state QED theory. Int. J. Mod. Phys. A 19, 3879–3896 (2004).

    Google Scholar 

  33. Franco, D., Consolati, G. & Trezzi, D. Positronium signature in organic liquid scintillators for neutrino experiments. Phys. Rev. C 83, 015504 (2011).

    Google Scholar 

  34. Consolati, G. et al. Characterization of positronium properties in doped liquid scintillators. Phys. Rev. C 88, 065502 (2013).

    Google Scholar 

  35. Abe, Y. et al. Ortho-positronium observation in the double Chooz experiment. J. High Energy Phys. 2014, 32 (2014).

    Google Scholar 

  36. Firestone, R. et al. Database of prompt gamma rays from slow neutron capture for elemental analysis (IAEA Publications, 2004).

  37. Beckurts, K.-H. & Wirtz, K. Neutron Physics (Springer Science & Business Media, 2013).

  38. Newsome, I., Bhike, M. & Tornow, W. J. Neutron radiative capture cross section of Cu 63, 65 between 0.4 and 7.5 MeV. Phys. Rev. C 97, 044617 (2018).

    Google Scholar 

  39. Bityukov, S. I. & Krasnikov, N. V. Signal significance in the presence of systematic and statistical uncertainties. J. High. Energy Phys. 2002, 060 (2002).

    Google Scholar 

  40. Abe, K. et al. Hyper-Kamiokande design report. https://doi.org/10.48550/arXiv.1805.04163 (2018).

  41. Raghavan, R. S. New prospects for real-time spectroscopy of low energy electron neutrinos from the sun. Phys. Rev. Lett. 78, 3618 (1997).

    Google Scholar 

  42. Cabrera, A. (CLOUD Collaboration). CLOUD: a new generation of neutrino science at Chooz. XXth International Workshop on Neutrino Telescopes (NeuTel), Venice, Italy (2023) on Zenodo https://doi.org/10.5281/zenodo.10049846.

  43. Šrámek, O. et al. Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth Planet. Sci. Lett. 361, 356–366 (2013).

    Google Scholar 

  44. Fiorentini, G. et al. KamLAND, terrestrial heat sources and neutrino oscillations. Phys. Lett. B 558, 15–21 (2003).

    Google Scholar 

  45. Arevalo, R., McDonough, W. F. & Luong, M. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–369 (2009).

    Google Scholar 

  46. Enomoto, S. Geoneutrino Spectrum and Luminosity. Database: https://www.awa.tohoku.ac.jp/~sanshiro/research/geoneutrino/spectrum/ (2006).

  47. Capozzi, F., Lisi, E. & Marrone, A. Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events. Phys. Rev. D 89, 013001 (2014).

    Google Scholar 

  48. Capozzi, F. et al. Current unknowns in the three-neutrino framework (Progress in Particle and Nuclear Physics, 2018).

  49. Strati, V. et al. Perceiving the crust in 3-D: a model integrating geological, geochemical, and geophysical data. Geochem. Geophys. Geosyst. 18, 4326–4341 (2017).

    Google Scholar 

  50. Huang, Y. et al. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14, 2023–2029 (2013).

    Google Scholar 

  51. Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Google Scholar 

  52. Arevalo, R. & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010).

    Google Scholar 

  53. Turcotte, D. & Schubert, G. Geodynamics (Cambridge University Press, 2014).

  54. KamLAND Collaboration. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88, 033001 (2013).

  55. Enomoto, S. et al. Neutrino geophysics with KamLAND and future prospects. Earth Planet. Sci. Lett. 258, 147–159 (2007).

    Google Scholar 

  56. Baldoncini, M. et al. Reference worldwide model for antineutrinos from reactors. Phys. Rev. D 91, 065002 (2015).

    Google Scholar 

  57. Mueller, T. A. et al. Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011).

    Google Scholar 

  58. Formaggio, J. A. & Zeller, G. P. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307 (2012).

    Google Scholar 

  59. ENSDF database as of May 7, 2023. Version available at http://www.nndc.bnl.gov/ensarchivals/.

  60. Fukugita, M. & Yanagida, T. Physics of Neutrinos: and Application to Astrophysics (Springer Science & Business Media, 2013).

  61. Abi, B. et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE. FERMILAB-PUB-20-024-ND (CERN, 2020).

  62. Cabrera, A. The SuperChooz experiment: unveiling the opportunity. In Proc. CERN EP Seminar (CERN, 2022).

  63. Ayres, D. S. et al. The NOvA Technical Design Report. FERMILAB-DESIGN-2007-01 (Fermilab, 2007) https://doi.org/10.2172/935497.

  64. Singh, B. Nuclear Data Sheets for A=1. Nucl. Data Sheets 106, 601–618 (2005).

  65. Chen, J., Cameron, J. & Singh, B. Nuclear data sheets for A=35. Nucl. Data Sheets 112, 2715–2850 (2011).

  66. De Frenne, D. & Negret, A. Nuclear Data Sheets for A=106. Nucl. Data Sheets 109, 943–1102 (2008).

  67. Turcotte, D. L. & Schubert, G. Geodynamics, applications of continuum physics to geological problems, Second edition (Cambridge University Press, 2002).

  68. Coltorti, M. et al. U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS. Geochim. Cosmochim. Acta 75, 2271–2294 (2011).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support received from: (i) the ‘Chaire Internationale de Recherche Blaise Pascal’ (Laureate 2016: F. Suekane), financed by Région Île-de-France (Paris) and coordinated by the Fondation de l’École Normale Supérieure (Paris) and hosted by CNRS at the APC Laboratory (Paris). This funding enabled launching the pioneering studies, including supporting a dedicated postdoctoral research fellow (S. Wagner) whose studies, input and comments were critical; (ii) ‘L’Instituto Universitario de Studi Superiori-Ferrara 1391’ for supporting Copernicus Visiting Scientist (Laureate 2019: M. Chen) and hosted by the Università di Ferrara and INFN Ferrara during the key phase of this study; and (iii) the ‘Emilie du Châtelet’ Programme, financed by the P2IO (LabEx, Université Paris-Saclay, France) supporting visiting scientist (2022: M. Chen) hosted at the IJCLab during the final writeup phase of this publication. We also thank Prof C. Volpe (APC, Paris) for helpful discussions regarding nuclear physics input for neutrino cross sections. The authors pay tribute to Prof Giovanni Fiorentini for his pioneering studies on geoneutrinos. Although he passed away in June 2022, his memory remains vibrant in our minds.

Author information

Author notes
  1. Deceased: H. de Kerret.

Authors and Affiliations

  1. LNCA Underground Laboratory, CNRS, EDF, Chooz Nuclear Reactor, Chooz, France

    A. Cabrera & J. F. Le Du

  2. IJCLab, CNRS/IN2P3, Université Paris-Saclay, Orsay, France

    A. Cabrera, C. Bourgeois, D. Breton, M. Briere, V. Chaumat, C. Delafosse, R. Gazzini, A. Gallas, G. Hull, P. Laniéce, J. F. Le Du, F. Legrand, P. Loaiza, J. Maalmi, B. Mathon, L. Ménard, D. Navas-Nicolás, H. Ramarijaona, P. Rosier, L. Simard & M. -A. Verdier

  3. APC, CNRS, Université de Paris Cité, Paris, France

    A. Cabrera, H. de Kerret, M. Obolensky & F. Suekane

  4. Department of Physics, Engineering Physics & Astronomy, Queen’s University, Kingston, ON, Canada

    M. Chen & C. Lefebvre

  5. INFN, Sezione di Ferrara, Ferrara, Italy

    F. Mantovani, A. Serafini & V. Strati

  6. Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Ferrara, Italy

    F. Mantovani, A. Serafini & V. Strati

  7. INFN, Sezione di Padova, Padova, Italy

    A. Serafini & S. Dusini

  8. Dipartimento di Fisica e Astronomia, Università di Padova, Padova, Italy

    A. Serafini

  9. Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Zaragoza, Spain

    J. Apilluelo, J. Galán, J. A. García, I. G. Irastorza, G. Luzón, M. Martínez & M. L. Sarsa

  10. Department of Physics and Astronomy, University of Sussex, Brighton, UK

    L. Asquith, T. J. C. Bezerra, B. J. Cattermole, A. Earle, A. Gibson-Foster, W. C. Griffith, J. Hartnell, J. A. Lock, J. C. C. Porter & W. Shorrock

  11. Subatech, IMT-Atlantique, CNRS, Nantes Université, Nantes, France

    J. L. Beney, M. Bongrand, A. Cadiou, F. Haddad, F. Lefevre, P. Pillot, D. Stocco, J. S. Stutzmann, B. Viaud & F. Yermia

  12. CPPM, CNRS, Université de Aix Marseille, Marseille, France

    J. Busto

  13. CIEMAT, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain

    E. Calvo, C. Palomares & A. Verdugo

  14. LP2I, CNRS, Université de Bordeaux, Bordeaux, Gradignan, France

    E. Chauveau, C. Marquet, M. S. Pravikoff & M. Roche

  15. Departamento de Física, Universidade Estadual de Londrina, Londrina, Brazil

    P. Chimenti & C. Frigerio-Martins

  16. Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany

    C. Girard-Carillo, L. Koch, H. Th. J. Steiger, A. Tunc & S. M. Wakely

  17. IPHC, CNRS, Université de Strasbourg, Strasbourg, France

    A. Hourlier

  18. IJCLab, Université Paris Cité, Orsay, France

    P. Laniéce, L. Ménard & M. -A. Verdier

  19. Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil

    H. Nunokawa

  20. Department of Physics and Astronomy, University of California at Irvine, Irvine, CA, USA

    J. P. Ochoa-Ricoux

  21. Institute of Particle and Nuclear Physics, Charles University, Prague, Czechia

    B. Roskovec

  22. Detektorlabor, Exzellenzcluster PRISMA+, Johannes Gutenberg-Universität Mainz, Mainz, Germany

    H. Th. J. Steiger

  23. RCNS, Tohoku University, Sendai, Japan

    F. Suekane

Consortia

LiquidO Collaboration

  • A. Cabrera
  • , M. Chen
  • , F. Mantovani
  • , A. Serafini
  • , V. Strati
  • , J. Apilluelo
  • , L. Asquith
  • , J. L. Beney
  • , T. J. C. Bezerra
  • , M. Bongrand
  • , C. Bourgeois
  • , D. Breton
  • , M. Briere
  • , J. Busto
  • , A. Cadiou
  • , E. Calvo
  • , V. Chaumat
  • , E. Chauveau
  • , B. J. Cattermole
  • , P. Chimenti
  • , C. Delafosse
  • , H. de Kerret
  • , S. Dusini
  • , A. Earle
  • , C. Frigerio-Martins
  • , J. Galán
  • , J. A. García
  • , R. Gazzini
  • , A. Gibson-Foster
  • , A. Gallas
  • , C. Girard-Carillo
  • , W. C. Griffith
  • , F. Haddad
  • , J. Hartnell
  • , A. Hourlier
  • , G. Hull
  • , I. G. Irastorza
  • , L. Koch
  • , P. Laniéce
  • , J. F. Le Du
  • , C. Lefebvre
  • , F. Lefevre
  • , F. Legrand
  • , P. Loaiza
  • , J. A. Lock
  • , G. Luzón
  • , J. Maalmi
  • , C. Marquet
  • , M. Martínez
  • , B. Mathon
  • , L. Ménard
  • , D. Navas-Nicolás
  • , H. Nunokawa
  • , J. P. Ochoa-Ricoux
  • , M. Obolensky
  • , C. Palomares
  • , P. Pillot
  • , J. C. C. Porter
  • , M. S. Pravikoff
  • , H. Ramarijaona
  • , M. Roche
  • , P. Rosier
  • , B. Roskovec
  • , M. L. Sarsa
  • , W. Shorrock
  • , L. Simard
  • , H. Th. J. Steiger
  • , D. Stocco
  • , J. S. Stutzmann
  • , F. Suekane
  • , A. Tunc
  • , M. -A. Verdier
  • , A. Verdugo
  • , B. Viaud
  • , S. M. Wakely
  •  & F. Yermia

Contributions

The primary authors for this work have been listed first (alphabetically), followed by all other LiquidO Consortium members (alphabetically). The primary authors were fully involved in the conception and execution of this study, including performing calculations, interpretation of results, evaluation of the scientific and technical considerations, development of the discussion and formulation of conclusions, and writing the paper. Consortium members were variously involved in developing LiquidO as a new idea and detection technique, including software for simulations. All authors reviewed and approved the submitted manuscript.

Corresponding authors

Correspondence to A. Cabrera, M. Chen, F. Mantovani, A. Serafini or V. Strati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Dave Wark and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LiquidO Collaboration. Probing Earth’s missing potassium using the antimatter signature of geoneutrinos. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02518-6

Download citation

  • Received: 13 May 2024

  • Accepted: 20 January 2026

  • Published: 09 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02518-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing