Abstract
Puzzles exist in our theories of Earth’s formation and bulk chemical composition. Related to these questions is our incomplete knowledge of the planet’s overall heat budget and thermal history. The successful observation of geoneutrinos originating from uranium and thorium decay chains, manifestations of the planet’s natural radioactivity, serves as the only direct probe of Earth’s internal, radiogenic heat engine so far. Intriguingly, potassium (40K) geoneutrinos have never been observed and have so far been considered impractical to measure despite their importance in Earth’s radioactive inventory. We propose here an approach for potassium geoneutrino detection that exploits their antiparticle nature. The detection framework relies on the LiquidO technique to identify positrons, thereby reducing otherwise overwhelming backgrounds. Antineutrino interactions with candidate isotope targets have been thoroughly examined and copper is found to be the ideal isotope able to meet all experimental feasibility conditions. We discuss the challenging experimental requirements to yield a potassium geoneutrino discovery.
Similar content being viewed by others
Data availability
Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
References
McDonough, W. F. & Sun, S. -S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Davies, J. H. & Davies, D. R. Earth’s surface heat flux. Solid Earth 1, 5–24 (2010).
McDonough, W. F., Šrámek, O. & Wipperfurth, S. A. Radiogenic power and geoneutrino luminosity of the earth and other terrestrial bodies through time. Geochem. Geophys. Geosyst. 21, e2019GC008865 (2020).
Arevalo, R. et al. Simplified mantle architecture and distribution of radiogenic power. Geochem. Geophys. Geosyst. 14, 2265–2285 (2013).
Goettel, K. A. Models for the origin and composition of the Earth, and the hypothesis of potassium in the Earth’s core. Geophys. Surv. 2, 369–397 (1976).
Lassiter, J. C. Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the “missing argon” problem. Geochem. Geophys. Geosyst. 5, Q11012 (2004).
Allègre, C. J., Hofmann, A. & O’Nions, K. The argon constraints on mantle structure. Geophys. Res. Lett. 23, 3555–3557 (1996).
Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).
Fiorentini, G., Lissia, M. & Mantovani, F. Geo-neutrinos and Earth’s interior. Phys. Rep. 453, 117–172 (2007).
Raghavan, R. S. et al. Measuring the global radioactivity in the Earth by multidetector antineutrino spectroscopy. Phys. Rev. Lett. 80, 635 (1998).
Rothschild, C. G., Chen, M. C. & Calaprice, F. P. Antineutrino geophysics with liquid scintillator detectors. Geophys. Res. Lett. 25, 1083–1086 (1998).
KamLAND Collaboration. Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion. Phys. Rev. Lett. 94, 081801 (2005).
Agostini, M. et al. Spectroscopy of geoneutrinos from 2056 days of Borexino data. Phys. Rev. D 92, 031101 (2015).
Agostini, M. et al. Comprehensive geoneutrino analysis with Borexino. Phys. Rev. D 101, 012009 (2020).
Albanese, V. et al. The SNO+ experiment. J. Instrum. 16, P08059 (2021).
An, F. et al. Neutrino physics with JUNO. J. Phys. G Nucl. Part. Phys. 43, 030401 (2016).
Leyton, M., Dye, S. & Monroe, J. Exploring the hidden interior of the Earth with directional Neutrino measurements. Nat. Commun. 8, 15989 (2017).
Wang, Z. & Chen, S. Hunting potassium geoneutrinos with liquid scintillator Cherenkov Neutrino detectors. Chin. Phys. C 44, 033001 (2020).
Benziger, J. et al. A scintillator purification system for the Borexino solar Neutrino detector. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 587, 277–291 (2008).
Cowan, C. L. et al. Detection of the free neutrino: a confirmation. Science 124, 103–104 (1956).
Abreu, Y. et al. SoLid: a short baseline reactor Neutrino experiment. J. Instrum. 16, P02025 (2021).
Krauss, L. M., Glashow, S. L. & Schramm, D. N. Antineutrino astronomy and geophysics. Nature 310, 191–198 (1984).
Chen, M. Potassium Geo-neutrino Detection. as presented at Neutrino Geophysics 2005, Honolulu, HI, USA (2005).
Cabrera, A. et al. Neutrino physics with an opaque detector. Commun. Phys. 4, 273 (2021).
Schoppmann, S. Review of novel approaches to organic liquid scintillators in neutrino physics. Symmetry 15, 11 (2023).
Apilluelo, J. et al. The stochastic light confinement of LiquidO. Preprint at arXiv https://doi.org/10.48550/arXiv.2503.02541 (2025).
Cabrera, A. & LPET-Otech Collaboration, Novel positron emission tomography with opaque liquid scintillator detection technology. In Proc. 2022 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference (NSS-MIC-IEEE) (IEEE,2022).
Honda, M. et al. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model. Phys. Rev. D 92, 023004 (2015).
Bellini, G. et al. Geoneutrinos and geoscience: an intriguing joint-venture. Riv. Nuovo Cim. 45, 1–105 (2022).
Abe, S. et al. Measurement of cosmic-ray muon spallation products in a xenon-loaded liquid scintillator with KamLAND. Phys. Rev. C 107, 054612 (2023).
Berger, M. et al. XCOM: photon cross sections database: NIST standard reference database 8 (NIST, 2013).
Karshenboim, S. G. Precision study of positronium: testing bound state QED theory. Int. J. Mod. Phys. A 19, 3879–3896 (2004).
Franco, D., Consolati, G. & Trezzi, D. Positronium signature in organic liquid scintillators for neutrino experiments. Phys. Rev. C 83, 015504 (2011).
Consolati, G. et al. Characterization of positronium properties in doped liquid scintillators. Phys. Rev. C 88, 065502 (2013).
Abe, Y. et al. Ortho-positronium observation in the double Chooz experiment. J. High Energy Phys. 2014, 32 (2014).
Firestone, R. et al. Database of prompt gamma rays from slow neutron capture for elemental analysis (IAEA Publications, 2004).
Beckurts, K.-H. & Wirtz, K. Neutron Physics (Springer Science & Business Media, 2013).
Newsome, I., Bhike, M. & Tornow, W. J. Neutron radiative capture cross section of Cu 63, 65 between 0.4 and 7.5 MeV. Phys. Rev. C 97, 044617 (2018).
Bityukov, S. I. & Krasnikov, N. V. Signal significance in the presence of systematic and statistical uncertainties. J. High. Energy Phys. 2002, 060 (2002).
Abe, K. et al. Hyper-Kamiokande design report. https://doi.org/10.48550/arXiv.1805.04163 (2018).
Raghavan, R. S. New prospects for real-time spectroscopy of low energy electron neutrinos from the sun. Phys. Rev. Lett. 78, 3618 (1997).
Cabrera, A. (CLOUD Collaboration). CLOUD: a new generation of neutrino science at Chooz. XXth International Workshop on Neutrino Telescopes (NeuTel), Venice, Italy (2023) on Zenodo https://doi.org/10.5281/zenodo.10049846.
Šrámek, O. et al. Geophysical and geochemical constraints on geoneutrino fluxes from Earth’s mantle. Earth Planet. Sci. Lett. 361, 356–366 (2013).
Fiorentini, G. et al. KamLAND, terrestrial heat sources and neutrino oscillations. Phys. Lett. B 558, 15–21 (2003).
Arevalo, R., McDonough, W. F. & Luong, M. The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet. Sci. Lett. 278, 361–369 (2009).
Enomoto, S. Geoneutrino Spectrum and Luminosity. Database: https://www.awa.tohoku.ac.jp/~sanshiro/research/geoneutrino/spectrum/ (2006).
Capozzi, F., Lisi, E. & Marrone, A. Neutrino mass hierarchy and electron neutrino oscillation parameters with one hundred thousand reactor events. Phys. Rev. D 89, 013001 (2014).
Capozzi, F. et al. Current unknowns in the three-neutrino framework (Progress in Particle and Nuclear Physics, 2018).
Strati, V. et al. Perceiving the crust in 3-D: a model integrating geological, geochemical, and geophysical data. Geochem. Geophys. Geosyst. 18, 4326–4341 (2017).
Huang, Y. et al. A reference Earth model for the heat-producing elements and associated geoneutrino flux. Geochem. Geophys. Geosyst. 14, 2023–2029 (2013).
Javoy, M. et al. The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).
Arevalo, R. & McDonough, W. F. Chemical variations and regional diversity observed in MORB. Chem. Geol. 271, 70–85 (2010).
Turcotte, D. & Schubert, G. Geodynamics (Cambridge University Press, 2014).
KamLAND Collaboration. Reactor on-off antineutrino measurement with KamLAND. Phys. Rev. D 88, 033001 (2013).
Enomoto, S. et al. Neutrino geophysics with KamLAND and future prospects. Earth Planet. Sci. Lett. 258, 147–159 (2007).
Baldoncini, M. et al. Reference worldwide model for antineutrinos from reactors. Phys. Rev. D 91, 065002 (2015).
Mueller, T. A. et al. Improved predictions of reactor antineutrino spectra. Phys. Rev. C 83, 054615 (2011).
Formaggio, J. A. & Zeller, G. P. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys. 84, 1307 (2012).
ENSDF database as of May 7, 2023. Version available at http://www.nndc.bnl.gov/ensarchivals/.
Fukugita, M. & Yanagida, T. Physics of Neutrinos: and Application to Astrophysics (Springer Science & Business Media, 2013).
Abi, B. et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE. FERMILAB-PUB-20-024-ND (CERN, 2020).
Cabrera, A. The SuperChooz experiment: unveiling the opportunity. In Proc. CERN EP Seminar (CERN, 2022).
Ayres, D. S. et al. The NOvA Technical Design Report. FERMILAB-DESIGN-2007-01 (Fermilab, 2007) https://doi.org/10.2172/935497.
Singh, B. Nuclear Data Sheets for A=1. Nucl. Data Sheets 106, 601–618 (2005).
Chen, J., Cameron, J. & Singh, B. Nuclear data sheets for A=35. Nucl. Data Sheets 112, 2715–2850 (2011).
De Frenne, D. & Negret, A. Nuclear Data Sheets for A=106. Nucl. Data Sheets 109, 943–1102 (2008).
Turcotte, D. L. & Schubert, G. Geodynamics, applications of continuum physics to geological problems, Second edition (Cambridge University Press, 2002).
Coltorti, M. et al. U and Th content in the Central Apennines continental crust: a contribution to the determination of the geo-neutrinos flux at LNGS. Geochim. Cosmochim. Acta 75, 2271–2294 (2011).
Acknowledgements
We acknowledge the support received from: (i) the ‘Chaire Internationale de Recherche Blaise Pascal’ (Laureate 2016: F. Suekane), financed by Région Île-de-France (Paris) and coordinated by the Fondation de l’École Normale Supérieure (Paris) and hosted by CNRS at the APC Laboratory (Paris). This funding enabled launching the pioneering studies, including supporting a dedicated postdoctoral research fellow (S. Wagner) whose studies, input and comments were critical; (ii) ‘L’Instituto Universitario de Studi Superiori-Ferrara 1391’ for supporting Copernicus Visiting Scientist (Laureate 2019: M. Chen) and hosted by the Università di Ferrara and INFN Ferrara during the key phase of this study; and (iii) the ‘Emilie du Châtelet’ Programme, financed by the P2IO (LabEx, Université Paris-Saclay, France) supporting visiting scientist (2022: M. Chen) hosted at the IJCLab during the final writeup phase of this publication. We also thank Prof C. Volpe (APC, Paris) for helpful discussions regarding nuclear physics input for neutrino cross sections. The authors pay tribute to Prof Giovanni Fiorentini for his pioneering studies on geoneutrinos. Although he passed away in June 2022, his memory remains vibrant in our minds.
Author information
Authors and Affiliations
Consortia
Contributions
The primary authors for this work have been listed first (alphabetically), followed by all other LiquidO Consortium members (alphabetically). The primary authors were fully involved in the conception and execution of this study, including performing calculations, interpretation of results, evaluation of the scientific and technical considerations, development of the discussion and formulation of conclusions, and writing the paper. Consortium members were variously involved in developing LiquidO as a new idea and detection technique, including software for simulations. All authors reviewed and approved the submitted manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Physics thanks Dave Wark and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
LiquidO Collaboration. Probing Earth’s missing potassium using the antimatter signature of geoneutrinos. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02518-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s42005-026-02518-6


