Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Complex frequency detection in a subsystem
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Complex frequency detection in a subsystem

  • Juntao Huang  ORCID: orcid.org/0000-0002-0372-64511,2,
  • Jiangping Hu  ORCID: orcid.org/0000-0002-4837-77423,4,5 &
  • Zhesen Yang  ORCID: orcid.org/0000-0002-3217-29101,6 

Communications Physics , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Optical physics
  • Theoretical physics

Abstract

Non-Hermitian physics, such as the non-Hermitian skin effect (NHSE), is well-established in classical platforms, but its emergence in intrinsically Hermitian or quantum systems remains a key challenge. Bridging this gap is crucial for connecting non-Hermitian concepts with foundational quantum many-body theory. Here, we systematically investigate this by studying a quantum subsystem with an effective non-Hermitian Hamiltonian arising from its exact frequency-dependent self-energy. We further employ complex-frequency detection, including excitation, synthesis, and fingerprint, to probe physical responses induced by complex driving frequencies. Our calculations reveal that both complex frequency excitation and synthesis are incompatible with the non-Hermitian approximation and cannot characterize the presence of the NHSE. In contrast, the complex-frequency fingerprint successfully detects the distinctive responses induced by the NHSE through the introduction of a double-frequency Green’s function. Our work provides a platform for studying non-Hermitian physics and its unconventional response in quantum systems rigorously without relying on any approximations.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author, Zhesen Yang, upon request.

Code availability

Code examples of key conclusions developed for this study and the software used are available in the GitHub repository at https://github.com/oaddao/CFD-code-examplesand have been archived in Zenodo with the https://doi.org/10.5281/zenodo.17404523. Other codes are available from the authors upon request.

References

  1. Ashida, Y., Gong, Z. & Ueda, M. Non-hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Google Scholar 

  2. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Google Scholar 

  3. Zhang, X., Zhang, T., Lu, M.-H. & Chen, Y.-F. A review on non-hermitian skin effect. Adv. Phys. X 7, 2109431 (2022).

    Google Scholar 

  4. Lin, R., Tai, T., Li, L. & Lee, C. H. Topological non-hermitian skin effect. Front. Phys. 18, 53605 (2023).

    Google Scholar 

  5. Yao, S. & Wang, Z. Edge states and topological invariants of non-hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Google Scholar 

  6. Song, F., Yao, S. & Wang, Z. Non-hermitian topological invariants in real space. Phys. Rev. Lett. 123, 246801 (2019).

    Google Scholar 

  7. Kunst, F. K., Edvardsson, E., Budich, J. C. & Bergholtz, E. J. Biorthogonal bulk-boundary correspondence in non-hermitian systems. Phys. Rev. Lett. 121, 026808 (2018).

    Google Scholar 

  8. Lee, C. H. & Thomale, R. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B 99, 201103 (2019).

    Google Scholar 

  9. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-hermitian physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  10. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    Google Scholar 

  11. Borgnia, D. S., Kruchkov, A. J. & Slager, R.-J. Non-hermitian boundary modes and topology. Phys. Rev. Lett. 124, 056802 (2020).

    Google Scholar 

  12. Zhang, K., Yang, Z. & Fang, C. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett. 125, 126402 (2020).

    Google Scholar 

  13. Yi, Y. & Yang, Z. Non-hermitian skin modes induced by on-site dissipations and chiral tunneling effect. Phys. Rev. Lett. 125, 186802 (2020).

    Google Scholar 

  14. Zhang, L. et al. Acoustic non-hermitian skin effect from twisted winding topology. Nat. Commun. 12, 6297 (2021).

    Google Scholar 

  15. Gu, Z. et al. Transient non-hermitian skin effect. Nat. Commun. 13, 7668 (2022).

    Google Scholar 

  16. Zhang, X., Tian, Y., Jiang, J.-H., Lu, M.-H. & Chen, Y.-F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Google Scholar 

  17. Zhou, Q. et al. Observation of geometry-dependent skin effect in non-Hermitian phononic crystals with exceptional points. Nat. Commun. 14, 4569 (2023).

    Google Scholar 

  18. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Google Scholar 

  19. Xiao, L. et al. Non-hermitian bulk-boundary correspondence in quantum dynamics. Nat. Phys. 16, 761 (2020).

    Google Scholar 

  20. Lin, Q. et al. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun. 13, 3229 (2022).

    Google Scholar 

  21. Liu, G.-G. et al. Localization of chiral edge states by the non-hermitian skin effect. Phys. Rev. Lett. 132, 113802 (2024).

    Google Scholar 

  22. Lin, Q. et al. Topological phase transitions and mobility edges in non-hermitian quasicrystals. Phys. Rev. Lett. 129, 113601 (2022).

    Google Scholar 

  23. Ghatak, A., Brandenbourger, M., Wezel, J. & Coulais, C. Observation of non-hermitian topology and its bulk-edge correspondence in an active mechanical metamaterial. Proc. Natl. Acad. Sci. U.S.A. 117, 29561–29568 (2020).

    Google Scholar 

  24. Brandenbourger, M., Locsin, X., Lerner, E. & Coulais, C. Non-reciprocal robotic metamaterials. Nat. Commun. 10, 1–8 (2019).

    Google Scholar 

  25. Chen, Y., Li, X., Scheibner, C., Vitelli, V. & Huang, G. Realization of active metamaterials with odd micropolar elasticity. Nat. Commun. 12, 5935 (2021).

    Google Scholar 

  26. Wang, W., Wang, X. & Ma, G. Non-hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    Google Scholar 

  27. Helbig, T. et al. Generalized bulk-boundary correspondence in non-hermitian topolectrical circuits. Nat. Phys. 16, 747 (2020).

    Google Scholar 

  28. Hofmann, T. et al. Reciprocal skin effect and its realization in a topolectrical circuit. Phys. Rev. Res. 2, 023265 (2020).

    Google Scholar 

  29. Liu, S. et al. Non-hermitian skin effect in a non-hermitian electrical circuit. Research 2021, 5608038 (2021).

    Google Scholar 

  30. Zou, D. et al. Observation of hybrid higher-order skin-topological effect in non-hermitian topolectrical circuits. Nat. Commun. 12, 7201 (2021).

    Google Scholar 

  31. Zhang, H., Chen, T., Li, L., Lee, C. H. & Zhang, X. Electrical circuit realization of topological switching for the non-hermitian skin effect. Phys. Rev. B 107, 085426 (2023).

    Google Scholar 

  32. Kozii, V. & Fu, L. Non-hermitian topological theory of finite-lifetime quasiparticles: prediction of bulk fermi arc due to exceptional point. Phys. Rev. B 109, 235139 (2024).

    Google Scholar 

  33. Nagai, Y., Qi, Y., Isobe, H., Kozii, V. & Fu, L. Dmft reveals the non-hermitian topology and fermi arcs in heavy-fermion systems. Phys. Rev. Lett. 125, 227204 (2020).

    Google Scholar 

  34. Kaneshiro, S., Yoshida, T. & Peters, R. \({{\mathbb{z}}}_{2}\) non-hermitian skin effect in equilibrium heavy-fermion systems. Phys. Rev. B 107, 195149 (2023).

    Google Scholar 

  35. Geng, H. et al. Nonreciprocal charge and spin transport induced by non-Hermitian skin effect in mesoscopic heterojunctions. Phys. Rev. B 107, 035306 (2023).

    Google Scholar 

  36. Shao, K. et al. Non-hermitian moiré valley filter. Phys. Rev. Lett. 132, 156301 (2024).

    Google Scholar 

  37. Zhou, H. et al. Observation of bulk Fermi arc and polarization half charge from paired exceptional points. Science 359, 1009–1012 (2018).

    Google Scholar 

  38. Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    Google Scholar 

  39. Yoshida, T., Peters, R., Kawakami, N. & Hatsugai, Y. Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry. Phys. Rev. B 99, 121101 (2019).

    Google Scholar 

  40. Rausch, R., Peters, R. & Yoshida, T. Exceptional points in the one-dimensional Hubbard model. New J. Phys. 23, 013011 (2021).

    Google Scholar 

  41. Peters, R. & Yoshida, T. Hinge non-hermitian skin effect in the single-particle properties of a strongly correlated f-electron system. Phys. Rev. B 110, 125114 (2024).

    Google Scholar 

  42. Bergholtz, E. J. & Budich, J. C. Non-Hermitian Weyl physics in topological insulator ferromagnet junctions. Phys. Rev. Res. 1, 012003 (2019).

    Google Scholar 

  43. San-Jose, P., Cayao, J., Prada, E. & Aguado, R. Majorana bound states from exceptional points in non-topological superconductors. Sci. Rep. 6, 21427 (2016).

    Google Scholar 

  44. Philip, T. M., Hirsbrunner, M. R. & Gilbert, M. J. Loss of hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator. Phys. Rev. B 98, 155430 (2018).

    Google Scholar 

  45. Guan, F. et al. Overcoming losses in superlenses with synthetic waves of complex frequency. Science 381, 766–771 (2023).

    Google Scholar 

  46. Guan, F. et al. Compensating losses in polariton propagation with synthesized complex frequency excitation. Nat. Mater. 23, 506–511 (2024).

    Google Scholar 

  47. Zeng, K. & Zhang, S. Complex frequency analysis of coupled plasmonic systems (invited). Acta. Optica. Sinica. 44, 1026019 (2024).

    Google Scholar 

  48. Li, H., Mekawy, A., Krasnok, A. & Alù, A. Virtual parity-time symmetry. Phys. Rev. Lett. 124, 193901 (2020).

    Google Scholar 

  49. Archambault, A., Besbes, M. & Greffet, J.-J. Superlens in the time domain. Phys. Rev. Lett. 109, 097405 (2012).

    Google Scholar 

  50. Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F. & Hess, O. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett. 112, 167401 (2014).

    Google Scholar 

  51. Tetikol, H. & Aksun, M. Enhancement of resolution and propagation length by sources with temporal decay in plasmonic devices. Plasmonics 15, 2137–2146 (2020).

    Google Scholar 

  52. Tsakmakidis, K. & Wartak, M. Metamaterials and Nanophotonics: Principles, Techniques and Applications (World Scientific, 2022).

  53. Kim, S., Lepeshov, S., Krasnok, A. & Alù, A. Beyond bounds on light scattering with complex frequency excitations. Phys. Rev. Lett. 129, 203601 (2022).

    Google Scholar 

  54. Kim, S., Peng, Y.-G., Yves, S. & Alù, A. Loss compensation and superresolution in metamaterials with excitations at complex frequencies. Phys. Rev. X 13, 041024 (2023).

    Google Scholar 

  55. Jiang, T. et al. Observation of non-hermitian boundary-induced hybrid skin-topological effect excited by synthetic complex frequencies. Nat. Commun. 15 (2024).

  56. Huang, J., Ding, K., Hu, J. & Yang, Z. Complex frequency fingerprint: basic concept and theory. Preprint at: https://doi.org/10.48550/arXiv.2411.12577 (2025).

  57. Xue, W.-T., Li, M.-R., Hu, Y.-M., Song, F. & Wang, Z. Simple formulas of directional amplification from non-bloch band theory. Phys. Rev. B 103, L241408 (2021).

    Google Scholar 

  58. Hu, Y.-M. & Wang, Z. Green’s functions of multiband non-hermitian systems. Phys. Rev. Res. 5, 043073 (2023).

    Google Scholar 

  59. Yokomizo, K. & Murakami, S. Non-bloch band theory of non-Hermitian systems. Phys. Rev. Lett. 123, 066404 (2019).

    Google Scholar 

  60. Yang, Z., Zhang, K., Fang, C. & Hu, J. Non-hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett. 125, 226402 (2020).

    Google Scholar 

  61. Haus, H. & Huang, W. Coupled-mode theory. Proc. IEEE. 79, 1505–1518 (1991).

    Google Scholar 

  62. Huang, W.-P. Coupled-mode theory for optical waveguides: an overview. J. Opt. Soc. Am. A 11, 963–983 (1994).

    Google Scholar 

  63. Li, Q., Wang, T., Su, Y., Yan, M. & Qiu, M. Coupled mode theory analysis of mode-splitting in coupled cavity system. Opt. Express 18, 8367–8382 (2010).

    Google Scholar 

  64. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    Google Scholar 

  65. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    Google Scholar 

Download references

Acknowledgements

J. Huang and Z.Y. were sponsored by the National Key R&D Program of China (No. 2023YFA1407500), China Postdoctoral Science Foundation (No. 2025M773351) and the National Natural Science Foundation of China (No. 12322405, 12104450, 12047503). J. Hu was sponsored by the Ministry of Science and Technology (Grant No. 2022YFA1403901), National Natural Science Foundation of China (No. 12494594), and the New Cornerstone Investigator Program.

Author information

Authors and Affiliations

  1. Department of Physics, Xiamen University, Fujian Province, Xiamen, China

    Juntao Huang & Zhesen Yang

  2. Jiujiang Research Institute of Xiamen University, Jiujiang, China

    Juntao Huang

  3. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China

    Jiangping Hu

  4. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China

    Jiangping Hu

  5. New Cornerstone Science Laboratory, Beijing, China

    Jiangping Hu

  6. Asia Pacific Center for Theoretical Physics, Gyeongbuk, Pohang, Republic of Korea

    Zhesen Yang

Authors
  1. Juntao Huang
    View author publications

    Search author on:PubMed Google Scholar

  2. Jiangping Hu
    View author publications

    Search author on:PubMed Google Scholar

  3. Zhesen Yang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Z. Yang conceived and supervised the research and acquired funding. J. Huang led the computational work, conducted the theoretical analysis and derivations, created the visualizations, and drafted the original manuscript. J. Hu contributed to the validation of the results through active discussion and data interpretation and acquired research funding. Both J. Hu and Z. Yang were involved in revising and editing the manuscript.

Corresponding authors

Correspondence to Jiangping Hu or Zhesen Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Hu, J. & Yang, Z. Complex frequency detection in a subsystem. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02524-8

Download citation

  • Received: 19 August 2025

  • Accepted: 22 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02524-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing