Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Physics
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications physics
  3. articles
  4. article
Phase retrieval via gain-based photonic XY-Hamiltonian optimization
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 February 2026

Phase retrieval via gain-based photonic XY-Hamiltonian optimization

  • Richard Zhipeng Wang  ORCID: orcid.org/0000-0001-7621-04161,
  • Guangyao Li  ORCID: orcid.org/0000-0001-6960-75461,
  • Silvia Gentilini  ORCID: orcid.org/0000-0001-6541-50962,
  • Davide Pierangeli2,
  • Marcello Calvanese Strinati3,
  • Claudio Conti  ORCID: orcid.org/0000-0003-2583-34152 &
  • …
  • Natalia G. Berloff  ORCID: orcid.org/0000-0003-2114-43211 

Communications Physics , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Applied mathematics
  • Applied optics
  • Information theory and computation

Abstract

Phase-retrieval from coded diffraction patterns (CDP) is important to X-ray crystallography, diffraction tomography and astronomical imaging, yet remains a hard, non-convex inverse problem. We show that CDP recovery can be reformulated exactly as the minimization of a continuous-variable XY Hamiltonian and solved by gain-based photonic networks. The coupled-mode equations we exploit are the natural mean-field dynamics of exciton-polariton condensate lattices, coupled-laser arrays and driven photon Bose-Einstein condensates, while other hardware such as the spatial photonic Ising machine can implement the same update rule through high-speed digital feedback, preserving full optical parallelism. Numerical experiments on images, two- and three-dimensional vortices and unstructured complex data demonstrate that the gain-based solver consistently outperforms the state-of-the-art Relaxed-Reflect-Reflect (RRR) algorithm in the medium-noise regime (signal-to-noise ratios 10-40 dB) and retains this advantage as problem size scales. Because the physical platform performs the continuous optimisation, our approach promises fast, energy-efficient phase retrieval on readily available photonic hardware.

Similar content being viewed by others

Non-equilibrium Bose–Einstein condensation in photonic systems

Article 14 June 2022

PID3Net: a deep learning approach for single-shot coherent X-ray diffraction imaging of dynamic phenomena

Article Open access 12 March 2025

Dynamic nanoimaging of extended objects via hard X-ray multiple-shot coherent diffraction with projection illumination optics

Article Open access 11 March 2021

Data availability

The authors declare that all data supporting the findings of this study are available within the supplementary information files of this paper.

Code availability

The code that supports the findings of this study is available from the first author (zw321@cam.ac.uk) upon request.

References

  1. Stroev, N. & Berloff, N. G. Analog photonics computing for information processing, inference, and optimization. Adv. Quantum Technol. 6, 2300055 (2023).

    Google Scholar 

  2. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2, 5 (2014).

  3. Syed, M. & Berloff, N. G. Physics-enhanced bifurcation optimisers: all you need is a canonical complex network. IEEE J. Sel. Top. Quantum Electron. 29, 7400406 (2023).

    Google Scholar 

  4. Honjo, T. et al. 100,000-spin coherent Ising machine. Sci. Adv. 7, eabh0952 (2021).

    Google Scholar 

  5. Honari-Latifpour, M., Mills, M. S. & Miri, M.-A. Combinatorial optimization with photonics-inspired clock models. Commun. Phys. 5, 104 (2022).

    Google Scholar 

  6. Inagaki, T. et al. A coherent Ising machine for 2000-node optimization problems. Science 354, 603–606 (2016).

    Google Scholar 

  7. Kalinin, K. P. & Berloff, N. G. Polaritonic network as a paradigm for dynamics of coupled oscillators. Phys. Rev. B 100, 245306 (2019).

    Google Scholar 

  8. Kalinin, K. P. & Berloff, N. G. Networks of non-equilibrium condensates for global optimization. N. J. Phys. 20, 113023 (2018).

    Google Scholar 

  9. Parto, M., Hayenga, W., Marandi, A., Christodoulides, D. N. & Khajavikhan, M. Realizing spin Hamiltonians in nanoscale active photonic lattices. Nat. Mater. 19, 725–731 (2020).

    Google Scholar 

  10. Kim, K., Kumagai, M. & Yamamoto, Y. Combinatorial clustering with a coherent XY machine. Opt. Express 32, 33737 (2024).

    Google Scholar 

  11. Pal, V., Mahler, S., Tradonsky, C., Friesem, A. A. & Davidson, N. Rapid fair sampling of the xy spin Hamiltonian with a laser simulator. Phys. Rev. Res. 2, 033008 (2020).

    Google Scholar 

  12. Nixon, M., Ronen, E., Friesem, A. A. & Davidson, N. Observing geometric frustration with thousands of coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

    Google Scholar 

  13. Wang, R. Z. et al. Efficient computation using spatial-photonic Ising machines with low-rank and circulant matrix constraints. Commun. Phys. 8, 86 (2025).

    Google Scholar 

  14. Harrison, R. W. Phase problem in crystallography. J. Opt. Soc. Am. A 10, 1046 (1993).

    Google Scholar 

  15. Barnett, M. J., Millane, R. P. & Kingston, R. L. Analysis of crystallographic phase retrieval using iterative projection algorithms. Acta Crystallogr. Sect. D Struct. Biol. 80, 800–818 (2024).

    Google Scholar 

  16. Krist, J. E. & Burrows, C. J. Phase-retrieval analysis of pre- and post-repair Hubble Space Telescope images. Appl. Opt. 34, 4951 (1995).

    Google Scholar 

  17. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Google Scholar 

  18. Shechtman, Y. et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32, 87–109 (2015).

    Google Scholar 

  19. Huang, M. & Xu, Z. No existence of a linear algorithm for the one-dimensional Fourier phase retrieval. J. Complex. 86, 101886 (2025).

    Google Scholar 

  20. Eldar, Y. C. & Mendelson, S. Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon. Anal. 36, 473–494 (2014).

    Google Scholar 

  21. Bendory, T., Khoo, Y., Kileel, J., Mickelin, O. & Singer, A. Autocorrelation analysis for cryo-EM with sparsity constraints: improved sample complexity and projection-based algorithms. Proc. Natl. Acad. Sci. USA 120, e2216507120 (2023).

    Google Scholar 

  22. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758 (1982).

    Google Scholar 

  23. Chen, C.-C., Miao, J., Wang, C. W. & Lee, T. K. Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input–output method. Phys. Rev. B 76, 064113 (2007).

    Google Scholar 

  24. Latychevskaia, T. Iterative phase retrieval in coherent diffractive imaging: practical issues. Appl. Opt. 57, 7187 (2018).

    Google Scholar 

  25. Tradonsky, C. et al. Rapid laser solver for the phase retrieval problem. Sci. Adv. 5, eaax4530 (2019).

    Google Scholar 

  26. Candès, E. J., Li, X. & Soltanolkotabi, M. Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. Anal. 39, 277–299 (2015).

    Google Scholar 

  27. Fannjiang, A. & Liao, W. Phase retrieval with random phase illumination. J. Opt. Soc. Am. A 29, 1847 (2012).

    Google Scholar 

  28. Fannjiang, A. & Strohmer, T. The numerics of phase retrieval. Acta Numer. 29, 125–228 (2020).

    Google Scholar 

  29. Candès, E. J., Strohmer, T. & Voroninski, V. PhaseLift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66, 1241–1274 (2013).

    Google Scholar 

  30. Waldspurger, I., d’Aspremont, A. & Mallat, S. Phase recovery, MaxCut and complex semidefinite programming. Math. Program. 149, 47–81 (2015).

    Google Scholar 

  31. Candès, E. J., Eldar, Y. C., Strohmer, T. & Voroninski, V. Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6, 199–225 (2013).

    Google Scholar 

  32. Elser, V. The complexity of bit retrieval. IEEE Trans. Inf. Theory 64, 412–428 (2018).

    Google Scholar 

  33. Levin, E. & Bendory, T. A note on Douglas–Rachford, gradients, and phase retrieval. arXiv: 1911.13179 (2020).

  34. Elser, V., Lan, T.-Y. & Bendory, T. Benchmark problems for phase retrieval. SIAM J. Imaging Sci. 11, 2429–2455 (2018).

    Google Scholar 

  35. Chen, Y. & Candès, E. J. Solving random quadratic systems of equations is nearly as easy as solving linear systems. Commun. Pure Appl. Math. 70, 822–883 (2017).

    Google Scholar 

  36. Cha, E., Lee, C., Jang, M. & Ye, J. C. Deepphasecut: deep relaxation in phase for unsupervised Fourier phase retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 44, 9931–9943 (2022).

    Google Scholar 

  37. Cummins, J. S., Salman, H. & Berloff, N. G. Ising Hamiltonian minimization: gain-based computing with manifold reduction of soft spins vs. quantum annealing. Phys. Rev. Res. 7, 013150 (2025).

    Google Scholar 

  38. Berloff, N. G. et al. Realizing the classical xy Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Google Scholar 

  39. Toebes, C., Vretenar, M. & Klaers, J. Dispersive and dissipative coupling of photon Bose–Einstein condensates. Commun. Phys. 5, 59 (2022).

    Google Scholar 

  40. Litvinenko, A. et al. A spinwave Ising machine. Commun. Phys. 6, 227 (2023).

    Google Scholar 

  41. Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic Ising machine by spatial light modulation. Phys. Rev. Lett. 122, 213902 (2019).

    Google Scholar 

  42. Veraldi, D. et al. Fully programmable spatial photonic Ising machine by focal plane division. Phys. Rev. Lett. 134, 063802 (2025).

    Google Scholar 

  43. Kalinin, K. P. & Berloff, N. G. Global optimization of spin Hamiltonians with gain-dissipative systems. Sci. Rep. 8, 17791 (2018).

    Google Scholar 

  44. Gerchberg, R. W. Holography without fringes in the electron microscope. Nature 240, 404–406 (1972).

    Google Scholar 

  45. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Google Scholar 

  46. Berloff, N. G. Padé approximations of solitary wave solutions of the Gross–Pitaevskii equation. J. Phys. A: Math. Gen. 37, 1617 (2004).

    Google Scholar 

  47. Yefsah, T. et al. Heavy solitons in a fermionic superfluid. Nature 499, 426–430 (2013).

    Google Scholar 

  48. Serafini, S. et al. Vortex reconnections and rebounds in trapped atomic Bose–Einstein condensates. Phys. Rev. X 7, 021031 (2017).

    Google Scholar 

  49. Ku, M. J. H. et al. Motion of a solitonic vortex in the BEC–BCS crossover. Phys. Rev. Lett. 113, 065301 (2014).

    Google Scholar 

  50. Bulgac, A., Forbes, M. M., Kelley, M. M., Roche, K. J. & Wlazłowski, G. Quantized superfluid vortex rings in the unitary fermi gas. Phys. Rev. Lett. 112, 025301 (2014).

    Google Scholar 

  51. Huang, G. B., Mattar, M., Berg, T. & Learned-Miller, E. Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In Workshop on Faces in ’Real-Life’ Images: Detection, Alignment, and Recognition, Marseille, France (eds Learned-Miller, E., Ferencz, A. & Jurie, F.) (2008).

  52. van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from HORIZON EIC-2022-PATHFINDERCHALLENGES-01 HEISINGBERG Project 101114978. R.Z.W. and N.G.B. acknowledge the support from the Julian Schwinger Foundation Grant No. JSF-19-02-0005. N.G.B. also acknowledges support from Weizmann-UK Make Connection Grant 142568 and the EPSRC UK Multidisciplinary Centre for Neuromorphic Computing (grant UKRI982).

Author information

Authors and Affiliations

  1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK

    Richard Zhipeng Wang, Guangyao Li & Natalia G. Berloff

  2. Department of Physics, Sapienza University of Rome, Rome, Italy

    Silvia Gentilini, Davide Pierangeli & Claudio Conti

  3. Research Center Enrico Fermi, Rome, Italy

    Marcello Calvanese Strinati

Authors
  1. Richard Zhipeng Wang
    View author publications

    Search author on:PubMed Google Scholar

  2. Guangyao Li
    View author publications

    Search author on:PubMed Google Scholar

  3. Silvia Gentilini
    View author publications

    Search author on:PubMed Google Scholar

  4. Davide Pierangeli
    View author publications

    Search author on:PubMed Google Scholar

  5. Marcello Calvanese Strinati
    View author publications

    Search author on:PubMed Google Scholar

  6. Claudio Conti
    View author publications

    Search author on:PubMed Google Scholar

  7. Natalia G. Berloff
    View author publications

    Search author on:PubMed Google Scholar

Contributions

R.Z.W. developed the simulation code and performed numerical simulations. G.L. performed large-scale numerical simulations, produced Fig. 4, and provided comments during manuscript preparation. S.G., D.P., M.C.S., and C.C. contributed implementation considerations for physical hardware, including expected operating timescales, and provided input on experimental feasibility. R.Z.W. wrote the initial manuscript draft. N.G.B. substantially revised and edited the manuscript. N.G.B. supervised the study.

Corresponding author

Correspondence to Natalia G. Berloff.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Physics thanks Mostafa Honari, Roman Khymyn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Description of the supplementary file

supplementary_data.xlsx

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R.Z., Li, G., Gentilini, S. et al. Phase retrieval via gain-based photonic XY-Hamiltonian optimization. Commun Phys (2026). https://doi.org/10.1038/s42005-026-02525-7

Download citation

  • Received: 19 August 2025

  • Accepted: 22 January 2026

  • Published: 03 February 2026

  • DOI: https://doi.org/10.1038/s42005-026-02525-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Editorial Values Statement
  • Editorial policies
  • Referees
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Physics (Commun Phys)

ISSN 2399-3650 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics