Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physics of viral dynamics

Abstract

Viral capsids are often regarded as inert structural units, but in actuality they display fascinating dynamics during different stages of their life cycle. With the advent of single-particle approaches and high-resolution techniques, it is now possible to scrutinize viral dynamics during and after their assembly and during the subsequent development pathway into infectious viruses. In this Review, the focus is on the dynamical properties of viruses, the different physical virology techniques that are being used to study them, and the physical concepts that have been developed to describe viral dynamics.

Key points

  • Viruses are highly dynamic structures.

  • Physics approaches are well suited to study the mechanisms behind the viral life cycle.

  • New single-particle techniques provide unprecedented insight into viral assembly. These techniques include resistive-pulse sensing, high-speed atomic force microscopy, interferometric scattering, charge-detection mass spectrometry and optical tweezers.

  • Assembly studies of both empty shells and genome-filled shells provide insights into the molecular mechanism and pathways of viral self-assembly.

  • Maturation is a fascinating process in which large structural changes occur in viruses.

  • Closed-shell dynamics includes soft modes and conformational changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Assembly of empty capsids.
Fig. 2: Assembly around a genome.
Fig. 3: Packaging signals.
Fig. 4: Closed-shell dynamics.

Similar content being viewed by others

References

  1. Baker, T. S., Olson, N. H. & Fuller, S. D. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862 (1999).

    Article  Google Scholar 

  2. Caspar, D. L. D. & Klug, A. Physical principles in construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  Google Scholar 

  3. Roos, W. H., Bruinsma, R. & Wuite, G. J. L. Physical virology. Nat. Phys. 6, 733–743 (2010). Review on the equilibrium physics of viral assembly under static conditions and on mechanical properties of viruses.

    Article  Google Scholar 

  4. Grunewald, K. et al. Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302, 1396–1398 (2003).

    Article  ADS  Google Scholar 

  5. Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).

    Article  ADS  Google Scholar 

  6. Dai, X. H. et al. In situ structures of the genome and genome-delivery apparatus in a single-stranded RNA virus. Nature 541, 112–116 (2017).

    Article  ADS  Google Scholar 

  7. Beren, C. et al. Genome organization and interaction with capsid protein in a multipartite RNA virus. Proc. Natl Acad. Sci. USA 117, 10673 (2020).

    Article  Google Scholar 

  8. Fraenkel-Conrat, H. & Williams, R. C. Reconstitution of active tobacco mosaic virus from its inactive protein and nucleic acid components. Proc. Natl Acad. Sci. USA 41, 690–698 (1955).

    Article  ADS  Google Scholar 

  9. Butler, P. J. G. & Klug, A. Assembly of a virus. Sci. Am. 239, 62–69 (1978).

    Article  Google Scholar 

  10. Bancroft, J. B. in Advances in Virus Research Vol. 16 (eds Smith, K. M. et al.) 99–134 (Academic, 1970).

  11. Adolph, K. W. & Butler, P. J. G. Assembly of a spherical plant virus. Phil. Trans. R. Soc. Lond. B 276, 113–122 (1976).

    Article  ADS  Google Scholar 

  12. Bancroft, J. B. & Hiebert, E. Formation of an infectious nucleoprotein from protein and nucleic acid isolated from a small spherical virus. Virology 32, 354–356 (1967).

    Article  Google Scholar 

  13. Klug, A. The tobacco mosaic virus particle: structure and assembly. Phil. Trans. R. Soc. Lond. B 354, 531–535 (1999).

    Article  Google Scholar 

  14. Prinsen, P., van der Schoot, P., Gelbart, W. M. & Knobler, C. M. Multishell structures of virus coat proteins. J. Phys. Chem. B 114, 5522–5533 (2010).

    Article  Google Scholar 

  15. Kegel, W. K. & van der Schoot, P. Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys. J. 91, 1501–1512 (2006).

    Article  ADS  Google Scholar 

  16. Ceres, P. & Zlotnick, A. Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids. Biochemistry 41, 11525–11531 (2002). Key article reporting how weak protein interactions can lead to stable viral capsids.

    Article  Google Scholar 

  17. McPherson, A. Micelle formation and crystallization as paradigms for virus assembly. BioEssays 27, 447–458 (2005).

    Article  Google Scholar 

  18. Prevelige, P. E., Thomas, D. & King, J. Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys. J. 64, 824–835 (1993).

    Article  Google Scholar 

  19. del Alamo, M. & Mateu, M. G. Electrostatic repulsion, compensatory mutations, and long-range non-additive effects at the dimerization interface of the HIV capsid protein. J. Mol. Biol. 345, 893–906 (2005).

    Article  Google Scholar 

  20. Casini, G. L., Graham, D., Heine, D., Garcea, R. L. & Wu, D. T. In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325, 320–327 (2004).

    Article  Google Scholar 

  21. Zandi, R., van der Schoot, P., Reguera, D., Kegel, W. & Reiss, H. Classical nucleation theory of virus capsids. Biophys. J. 90, 1939–1948 (2006).

    Article  ADS  Google Scholar 

  22. Medrano, M. et al. Imaging and quantitation of a succession of transient intermediates reveal the reversible self-assembly pathway of a simple icosahedral virus capsid. J. Am. Chem. Soc. 138, 15385–15396 (2016).

    Article  Google Scholar 

  23. Zlotnick, A. Distinguishing reversible from irreversible virus capsid assembly. J. Mol. Biol. 366, 14–18 (2007).

    Article  Google Scholar 

  24. Morozov, A. Y., Bruinsma, R. F. & Rudnick, J. Assembly of viruses and the pseudo-law of mass action. J. Chem. Phys. 131, 155101 (2009).

    Article  ADS  Google Scholar 

  25. Uetrecht, C., Barbu, I. M., Shoemaker, G. K., van Duijn, E. & Heck, A. J. R. Interrogating viral capsid assembly with ion mobility-mass spectrometry. Nat. Chem. 3, 126–132 (2011).

    Article  Google Scholar 

  26. Lutomski, C. A. et al. Hepatitis B virus capsid completion occurs through error correction. J. Am. Chem. Soc. 139, 16932–16938 (2017).

    Article  Google Scholar 

  27. Comas-Garcia, M., Cadena-Nava, R. D., Rao, A. L. N., Knobler, C. M. & Gelbart, W. M. In vitro quantification of the relative packaging efficiencies of single-stranded RNA molecules by viral capsid protein. J. Virol. 86, 12271–12282 (2012).

    Article  Google Scholar 

  28. Varrelmann, M. & Maiss, E. Mutations in the coat protein gene of Plum pox virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. J. Gen. Virol. 81, 567–576 (2000).

    Article  Google Scholar 

  29. Tang, J. H. et al. The role of subunit hinges and molecular “switches” in the control of viral capsid polymorphism. J. Struct. Biol. 154, 59–67 (2006).

    Article  Google Scholar 

  30. Lutomski, C. A. et al. Multiple pathways in capsid assembly. J. Am. Chem. Soc. 140, 5784–5790 (2018). Single-particle mass spectrometry approach on the variety of viral assembly pathways.

    Article  Google Scholar 

  31. Endres, D. & Zlotnick, A. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys. J. 83, 1217–1230 (2002).

    Article  ADS  Google Scholar 

  32. Hagan, M. F., Elrad, O. M. & Jack, R. L. Mechanisms of kinetic trapping in self-assembly and phase transformation. J. Chem. Phys. 135, 104115 (2011).

    Article  ADS  Google Scholar 

  33. Michaels, T. C. T., Bellaiche, M. M. J., Hagan, M. F. & Knowles, T. P. J. Kinetic constraints on self-assembly into closed supramolecular structures. Sci. Rep. 7, 12295 (2017).

    Article  ADS  Google Scholar 

  34. Levinthal, C. Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968).

    Article  Google Scholar 

  35. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein-folding — a synthesis. Proteins 21, 167–195 (1995).

    Article  Google Scholar 

  36. Leopold, P. E., Montal, M. & Onuchic, J. N. Protein folding funnels: a kinetic approach to the sequence–structure relationship. Proc. Natl Acad. Sci. USA 89, 8721–8725 (1992).

    Article  ADS  Google Scholar 

  37. Asor, R. et al. Assembly reactions of hepatitis B capsid protein into capsid nanoparticles follow a narrow path through a complex reaction landscape. ACS Nano 13, 7610–7626 (2019).

    Article  Google Scholar 

  38. Tuma, R., Tsuruta, H., French, K. H. & Prevelige, P. E. Detection of intermediates and kinetic control during assembly of bacteriophage P22 procapsid. J. Mol. Biol. 381, 1395–1406 (2008).

    Article  Google Scholar 

  39. Tresset, G. et al. Norovirus capsid proteins self-assemble through biphasic kinetics via long-lived stave-like intermediates. J. Am. Chem. Soc. 135, 15373–15381 (2013).

    Article  Google Scholar 

  40. Law-Hine, D., Zeghal, M., Bressanelli, S., Constantin, D. & Tresset, G. Identification of a major intermediate along the self-assembly pathway of an icosahedral viral capsid by using an analytical model of a spherical patch. Soft Matter 12, 6728–6736 (2016).

    Article  ADS  Google Scholar 

  41. Chen, B. HIV capsid assembly, mechanism, and structure. Biochemistry 55, 2539–2552 (2016).

    Article  Google Scholar 

  42. Valbuena, A. & Mateu, M. G. Kinetics of surface-driven self-assembly and fatigue-induced disassembly of a virus-based nanocoating. Biophys. J. 112, 663–673 (2017).

    Article  ADS  Google Scholar 

  43. Valbuena, A., Maity, S., Mateu, M. G. & Roos, W. H. Visualization of single molecules building a viral capsid protein lattice through stochastic pathways. ACS Nano 14, 8724–8734 (2020).

    Article  Google Scholar 

  44. Ando, T., Uchihashi, T. & Scheuring, S. Filming biomolecular processes by high-speed atomic force microscopy. Chem. Rev. 114, 3120–3188 (2014).

    Article  Google Scholar 

  45. Maity, S. et al. VPS4 triggers constriction and cleavage of ESCRT-III helical filaments. Sci. Adv. 5, eaau7198 (2019).

    Article  ADS  Google Scholar 

  46. Ruan, Y. et al. Structural titration of receptor ion channel GLIC gating by HS-AFM. Proc. Natl Acad. Sci. USA 115, 10333–10338 (2018).

    Article  Google Scholar 

  47. Zhou, J. S. et al. Characterization of virus capsids and their assembly intermediates by multicycle resistive-pulse sensing with four pores in series. Anal. Chem. 90, 7267–7274 (2018).

    Article  Google Scholar 

  48. Kondylis, P. et al. Competition between normative and drug-induced virus self-assembly observed with single-particle methods. J. Am. Chem. Soc. 141, 1251–1260 (2019). Using resistive-pulse sensing, the effects of drugs on viral assembly are studied.

    Article  Google Scholar 

  49. Brändén, C.-I. & Tooze, J. Introduction to Protein Structure 2nd edn (Garland, 1999).

  50. Rao, V. B. & Feiss, M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu. Rev. Virol. 2, 351–378 (2015).

  51. Smith, D. E. et al. The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 413, 748–752 (2001).

    Article  ADS  Google Scholar 

  52. Evilevitch, A., Lavelle, L., Knobler, C. M., Raspaud, E. & Gelbart, W. M. Osmotic pressure inhibition of DNA ejection from phage. Proc. Natl Acad. Sci. USA 100, 9292–9295 (2003).

    Article  ADS  Google Scholar 

  53. Keller, N., Grimes, S., Jardine, P. J. & Smith, D. E. Single DNA molecule jamming and history-dependent dynamics during motor-driven viral packaging. Nat. Phys. 12, 757 (2016).

    Article  Google Scholar 

  54. Tafoya, S. et al. Molecular switch-like regulation enables global subunit coordination in a viral ring ATPase. Proc. Natl Acad. Sci. USA 115, 7961–7966 (2018).

    Article  Google Scholar 

  55. Ordyan, M., Alam, I., Mahalingam, M., Rao, V. B. & Smith, D. E. Nucleotide-dependent DNA gripping and an end-clamp mechanism regulate the bacteriophage T4 viral packaging motor. Nat. Commun. 9, 5434 (2018).

    Article  ADS  Google Scholar 

  56. Newcomb, W. W., Cockrell, S. K., Homa, F. L. & Brown, J. C. Polarized DNA ejection from the Herpesvirus capsid. J. Mol. Biol. 392, 885–894 (2009).

    Article  Google Scholar 

  57. Hanhijarvi, K. J., Ziedaite, G., Pietila, M. K., Haeggstrom, E. & Bamford, D. H. DNA ejection from an archaeal virus — a single-molecule approach. Biophys. J. 104, 2264–2272 (2013).

    Article  ADS  Google Scholar 

  58. Mangenot, S., Hochrein, M., Radler, J. & Letellier, L. Real-time imaging of DNA ejection from single phage particles. Curr. Biol. 15, 430–435 (2005).

    Article  Google Scholar 

  59. Tsukamoto, H. et al. Evidence that SV40VP1-DNA interactions contribute to the assembly of 40-nm spherical viral particles. Genes Cells 12, 1267–1279 (2007).

    Article  Google Scholar 

  60. Cadena-Nava, R. D. et al. Self-assembly of viral capsid protein and RNA molecules of different sizes: requirement for a specific high protein/RNA mass ratio. J. Virol. 86, 3318–3326 (2012).

    Article  Google Scholar 

  61. Perlmutter, J. D. & Hagan, M. F. Mechanisms of viral assembly. Annu. Rev. Phys. Chem. 66, 217–239 (2015). Review on modelling approaches used to characterize capsid assembly.

    Article  ADS  Google Scholar 

  62. Hu, Y. F., Zandi, R., Anavitarte, A., Knobler, C. M. & Gelbart, W. M. Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. Biophys. J. 94, 1428–1436 (2008).

    Article  Google Scholar 

  63. Beren, C., Dreesens, L. L., Liu, K. N., Knobler, C. M. & Gelbart, W. M. The effect of RNA secondary structure on the self-assembly of viral capsids. Biophys. J. 113, 339–347 (2017).

    Article  ADS  Google Scholar 

  64. Hu, T., Zhang, R. & Shkovskii, B. I. Electrostatic theory of viral self-assembly. Phys. A 387, 3059–3064 (2008).

    Article  Google Scholar 

  65. Garmann, R. F. et al. Role of electrostatics in the assembly pathway of a single-stranded RNA virus. J. Virol. 88, 10472–10479 (2014).

    Article  Google Scholar 

  66. Gopal, A. et al. Viral RNAs are unusually compact. PLoS ONE 9, e105875 (2014).

  67. Perlmutter, J. D., Perkett, M. R. & Hagan, M. F. Pathways for virus assembly around nucleic acids. J. Mol. Biol. 426, 3148–3165 (2014).

    Article  Google Scholar 

  68. Hu, T. & Shklovskii, B. I. Kinetics of viral self-assembly: role of the single-stranded RNA antenna. Phys. Rev. E 75, 051901 (2007).

    Article  ADS  Google Scholar 

  69. Bruinsma, R. F., Comas-Garcia, M., Garmann, R. F. & Grosberg, A. Y. Equilibrium self-assembly of small RNA viruses. Phys. Rev. E 93, 032405 (2016).

    Article  ADS  Google Scholar 

  70. Garmann, R. F., Goldfain, A. M. & Manoharan, V. N. Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome. Proc. Natl Acad. Sci. USA 116, 22485–22490 (2019). Pioneering experimental article on following single-particle virus assembly by light-scattering techniques.

    Article  Google Scholar 

  71. Dragnea, B. Watching a virus grow. Proc. Natl Acad. Sci. USA 116, 22420–22422 (2019).

    Article  Google Scholar 

  72. Marchetti, M. et al. Real-time assembly of viruslike nucleocapsids elucidated at the single-particle level. Nano Lett. 19, 5746–5753 (2019). Introduces fluorescent optical tweezers to scrutinize assembly of viruses and virus-like particles.

    Article  ADS  Google Scholar 

  73. van Rosmalen, M. G. M. et al. Revealing in real-time a multistep assembly mechanism for SV40 virus-like particles. Sci. Adv. 6, eaaz1639 (2020).

    Article  ADS  Google Scholar 

  74. Sandalon, Z., DalyotHerman, N., Oppenheim, A. B. & Oppenheim, A. In vitro assembly of SV40 virions and pseudovirions: vector development for gene therapy. Hum. Gene Ther. 8, 843–849 (1997).

    Article  Google Scholar 

  75. van Rosmalen, M. G. M., Li, C., Zlotnick, A., Wuite, G. J. L. & Roos, W. H. Effect of dsDNA on the assembly pathway and mechanical strength of SV40-VP1 virus-like particles. Biophys. J. 115, 1656–1665 (2018).

    Article  Google Scholar 

  76. Kler, S. et al. RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism. J. Am. Chem. Soc. 134, 8823–8830 (2012).

    Article  Google Scholar 

  77. Chevreuil, M. et al. Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nat. Commun. 9, 3071 (2018).

    Article  ADS  Google Scholar 

  78. Rein, A. RNA packaging in HIV. Trends Microbiol. 27, 715–723 (2019).

    Article  Google Scholar 

  79. Comas-Garcia, M. et al. Efficient support of virus-like particle assembly by the HIV-1 packaging signal. eLife 7, e38438 (2018).

    Article  Google Scholar 

  80. Keane, S. C. et al. Structure of the HIV-1 RNA packaging signal. Science 348, 917 (2015).

    Article  ADS  Google Scholar 

  81. Ding, P. et al. Identification of the initial nucleocapsid recognition element in the HIV-1 RNA packaging signal. Proc. Natl Acad. Sci. USA 117, 17737 (2020).

    Article  Google Scholar 

  82. Webb, J. A., Jones, C. P., Parent, L. J., Rouzina, I. & Musier-Forsyth, K. Distinct binding interactions of HIV-1 Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA 19, 1078–1088 (2013).

    Article  Google Scholar 

  83. Jiang, W. & Tang, L. Atomic cryo-EM structures of viruses. Curr. Opin. Struct. Biol. 46, 122–129 (2017).

    Article  Google Scholar 

  84. Luque, D. & Caston, J. R. Cryo-electron microscopy for the study of virus assembly. Nat. Chem. Biol. 16, 231–239 (2020).

    Article  Google Scholar 

  85. Tang, L. et al. The structure of Pariacoto virus reveals a dodecahedral cage of duplex RNA. Nat. Struct. Biol. 8, 77–83 (2001).

    Article  Google Scholar 

  86. Koning, R. I. et al. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ. Nat. Commun. 7, 12524 (2016).

    Article  ADS  Google Scholar 

  87. Twarock, R., Leonov, G. & Stockley, P. G. Hamiltonian path analysis of viral genomes. Nat. Commun. 9, 2021 (2018). Approach to describe genome–capsid interactions.

    Article  ADS  Google Scholar 

  88. Dykeman, E. C. et al. Simple rules for efficient assembly predict the layout of a packaged viral RNA. J. Mol. Biol. 408, 399–407 (2011).

    Article  Google Scholar 

  89. Rudnick, J. & Bruinsma, R. Icosahedral packing of RNA viral genomes. Phys. Rev. Lett. 94, 038101 (2005).

    Article  ADS  Google Scholar 

  90. Twarock, R. & Stockley, P. G. RNA-mediated virus assembly: mechanisms and consequences for viral evolution and therapy. Annu. Rev. Biophys. 48, 495–514 (2019)..

  91. Coffin, J. M., Hughes, S. H. & Varmus, H. E. Retroviruses (Cold Spring Harbor Laboratory Press, 1997).

  92. Dharmavaram, S., She, S. B., Lázaro, G., Hagan, M. F. & Bruinsma, R. Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput. Biol. 15, e1006602 (2019).

    Article  ADS  Google Scholar 

  93. Pornillos, O. & Ganser-Pornillos, B. K. Maturation of retroviruses. Curr. Opin. Virol. 36, 47–55 (2019).

    Article  Google Scholar 

  94. Perilla, J. R. & Gronenborn, A. M. Molecular architecture of the retroviral capsid. Trends Biochem. Sci. 41, 410–420 (2016).

    Article  Google Scholar 

  95. Mattei, S., Schur, F. K. M. & Briggs, J. A. G. Retrovirus maturation — an extraordinary structural transformation. Curr. Opin. Virol. 18, 27–35 (2016).

    Article  Google Scholar 

  96. Kubo, Y., Hayashi, H., Matsuyama, T., Sato, H. & Yamamoto, N. Retrovirus entry by endocytosis and cathepsin proteases. Adv. Virol. 2012, 640894 (2012).

    Article  Google Scholar 

  97. Deshmukh, L., Ghirlando, R. & Clore, G. M. Conformation and dynamics of the Gag polyprotein of the human immunodeficiency virus 1 studied by NMR spectroscopy. Proc. Natl Acad. Sci. USA 112, 3374–3379 (2015).

    Article  ADS  Google Scholar 

  98. Gupta, S., Louis, J. M. & Tycko, R. Effects of an HIV-1 maturation inhibitor on the structure and dynamics of CA-SP1 junction helices in virus-like particles. Proc. Natl Acad. Sci. USA 117, 10286–10293 (2020).

    Article  Google Scholar 

  99. Briggs, J. A. G. Structural biology in situ — the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23, 261–267 (2013).

    Article  Google Scholar 

  100. Schur, F. K. M. et al. An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353, 506 (2016).

    Article  ADS  Google Scholar 

  101. Dick, R. A. et al. Inositol phosphates are assembly co-factors for HIV-1. Nature 560, 509–512 (2018).

    Article  ADS  Google Scholar 

  102. Marchetti, M., Wuite, G. J. L. & Roos, W. H. Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr. Opin. Virol. 18, 82–88 (2016).

    Article  Google Scholar 

  103. de Pablo, P. J. & Mateu, M. G. Mechanical properties of viruses. Subcell. Biochem. 68, 519–551 (2013).

    Article  Google Scholar 

  104. Buzón, P., Maity, S. & Roos, W. H. Physical virology: from virus self-assembly to particle mechanics. WIREs Nanomed. Nanobiotechnol. 12, e1613 (2020).

    Article  Google Scholar 

  105. Ivanovska, I. L. et al. Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc. Natl Acad. Sci. USA 101, 7600–7605 (2004). This paper represents a milestone in physical virology studies, introducing AFM as a tool to study viral mechanics.

    Article  ADS  Google Scholar 

  106. Snijder, J. et al. Probing the biophysical interplay between a viral genome and its capsid. Nat. Chem. 5, 502–509 (2013).

    Article  Google Scholar 

  107. Kol, N. et al. Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys. J. 91, 767–774 (2006).

    Article  ADS  Google Scholar 

  108. Kol, N. et al. A stiffness switch in human immunodeficiency virus. Biophys. J. 92, 1777–1783 (2007). This study shows a direct link between viral mechanics and infectivity.

    Article  ADS  Google Scholar 

  109. Pang, H. B. et al. Virion stiffness regulates immature HIV-1 entry. Retrovirology 10, 4 (2013).

    Article  Google Scholar 

  110. Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).

    Article  ADS  Google Scholar 

  111. Rankovic, S., Varadarajan, J., Ramalho, R., Aiken, C. & Rousso, I. Reverse transcription mechanically initiates HIV-1 capsid disassembly. J. Virol. 91, e00289-17 (2017).

    Article  Google Scholar 

  112. Rouzina, I. & Bruinsma, R. DNA confinement drives uncoating of the HIV virus. Eur. Phys. J. Spec. Top. 223, 1745–1754 (2014).

    Article  Google Scholar 

  113. Veesler, D. & Johnson, J. E. Virus maturation. Annu. Rev. Biophys. 41, 473–496 (2012).

    Article  Google Scholar 

  114. Hernando-Perez, M., Lambert, S., Nakatani-Webster, E., Catalano, C. E. & de Pablo, P. J. Cementing proteins provide extra mechanical stabilization to viral cages. Nat. Commun. 5, 4520 (2014).

    Article  ADS  Google Scholar 

  115. Roos, W. H. et al. Mechanics of bacteriophage maturation. Proc. Natl Acad. Sci. USA 109, 2342–2347 (2012).

    Article  ADS  Google Scholar 

  116. Jiang, W. et al. Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions. Nat. Struct. Biol. 10, 131–135 (2003).

    Article  Google Scholar 

  117. Juhala, R. J. et al. Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J. Mol. Biol. 299, 27–51 (2000).

    Article  Google Scholar 

  118. Lander, G. C. et al. Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM. Structure 16, 1399–1406 (2008).

    Article  Google Scholar 

  119. Kant, R. et al. Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation. Biochim. Biophys. Acta Gen. Subj. 1862, 1492–1504 (2018).

    Article  Google Scholar 

  120. Hernando-Perez, M. et al. The interplay between mechanics and stability of viral cages. Nanoscale 6, 2702–2709 (2014).

    Article  ADS  Google Scholar 

  121. Mangel, W. F. & Martin, C. San Structure, function and dynamics in adenovirus maturation. Viruses 6, 4536–4570 (2014).

    Article  Google Scholar 

  122. Perez-Berna, A. J. et al. The role of capsid maturation on adenovirus priming for sequential uncoating. J. Biol. Chem. 287, 31582–31595 (2012).

    Article  Google Scholar 

  123. Ortega-Esteban, A. et al. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9, 10826–10833 (2015).

    Article  Google Scholar 

  124. Denning, D. et al. Maturation of adenovirus primes the protein nano-shell for successful endosomal escape. Nanoscale 11, 4015–4024 (2019).

    Article  Google Scholar 

  125. Ortega-Esteban, A. et al. Monitoring dynamics of human adenovirus disassembly induced by mechanical fatigue. Sci. Rep. 3, 1434 (2013).

    Article  Google Scholar 

  126. Lindert, S., Silvestry, M., Mullen, T. M., Nemerow, G. R. & Stewart, P. L. Cryo-electron microscopy structure of an adenovirus–integrin complex indicates conformational changes in both penton base and integrin. J. Virol. 83, 11491–11501 (2009).

    Article  Google Scholar 

  127. Snijder, J. et al. Integrin and defensin modulate the mechanical properties of adenovirus. J. Virol. 87, 2756–2766 (2013).

    Article  Google Scholar 

  128. Müller, K. A. & Thomas, H. Structural Phase Transitions I. Topics in Current Physics Vol. 23 (Springer, 1981).

  129. Guerin, T. & Bruinsma, R. Theory of conformational transitions of viral shells. Phys. Rev. E 76, 061911 (2007).

    Article  ADS  Google Scholar 

  130. Widom, M., Lidmar, J. & Nelson, D. R. Soft modes near the buckling transition of icosahedral shells. Phys. Rev. E 76, 031911 (2007).

    Article  MathSciNet  ADS  Google Scholar 

  131. Lidmar, J., Mirny, L. & Nelson, D. R. Virus shapes and buckling transitions in spherical shells. Phys. Rev. E 68, 051910 (2003).

    Article  ADS  Google Scholar 

  132. Klug, W. S. et al. Failure of viral shells. Phys. Rev. Lett. 97, 228101 (2006).

    Article  ADS  Google Scholar 

  133. May, E. R., Feng, J. & Brooks, C. L. Exploring the symmetry and mechanism of virus capsid maturation via an ensemble of pathways. Biophys. J. 102, 606–612 (2012).

    Article  ADS  Google Scholar 

  134. Bothner, B. et al. Crystallographically identical virus capsids display different properties in solution. Nat. Struct. Biol. 6, 114–116 (1999).

    Article  Google Scholar 

  135. Speir, J. A. et al. Enhanced local symmetry interactions globally stabilize a mutant virus capsid that maintains infectivity and capsid dynamics. J. Virol. 80, 3582–3591 (2006).

    Article  Google Scholar 

  136. Speir, J. A., Munshi, S., Wang, G. J., Baker, T. S. & Johnson, J. E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryoelectron microscopy. Structure 3, 63–78 (1995).

    Article  Google Scholar 

  137. Milner, S. T. & Safran, S. A. Dynamical fluctuations of droplet microemulsions and vesicles. Phys. Rev. A 36, 4371–4379 (1987).

    Article  ADS  Google Scholar 

  138. Wilts, B. D., Schaap, I. A. T. & Schmidt, C. F. Swelling and softening of the cowpea chlorotic mottle virus in response to pH shifts. Biophys. J. 108, 2541–2549 (2015).

    Article  ADS  Google Scholar 

  139. Kononova, O. et al. Structural transitions and energy landscape for cowpea chlorotic mottle virus capsid mechanics from nanomanipulation in vitro and in silico. Biophys. J. 105, 1893–1903 (2013).

    Article  ADS  Google Scholar 

  140. Dykeman, E. C. & Sankey, O. F. Atomistic modeling of the low-frequency mechanical modes and Raman spectra of icosahedral virus capsids. Phys. Rev. E 81, 021918 (2010).

  141. Hadden, J. A. et al. All-atom molecular dynamics of the HBV capsid reveals insights into biological function and cryo-EM resolution limits. eLife 7, e32478 (2018).

    Article  Google Scholar 

  142. Liu, C. et al. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat. Commun. 7, 10714 (2016).

    Article  ADS  Google Scholar 

  143. Quinn, C. M. et al. Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magic-angle spinning NMR and molecular dynamics simulations. Proc. Natl Acad. Sci. USA 115, 11519–11524 (2018).

    Article  Google Scholar 

  144. van de Waterbeemd, M. et al. Structural analysis of a temperature-induced transition in a viral capsid probed by HDX-MS. Biophys. J. 112, 1157–1165 (2017).

    Article  Google Scholar 

  145. Lim, X. X. et al. Conformational changes in intact dengue virus reveal serotype-specific expansion. Nat. Commun. 8, 14339 (2017).

    Article  ADS  Google Scholar 

  146. Perilla, J. R. & Schulten, K. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat. Commun. 8, 15959 (2017).

    Article  ADS  Google Scholar 

  147. Hadden, J. A. & Perilla, J. R. All-atom virus simulations. Curr. Opin. Virol. 31, 82–91 (2018).

    Article  Google Scholar 

  148. Zink, M. & Grubmuller, H. Mechanical properties of the icosahedral shell of southern bean mosaic virus: a molecular dynamics study. Biophys. J. 96, 1350–1363 (2009).

    Article  ADS  Google Scholar 

  149. Zhao, G. et al. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013).

    Article  ADS  Google Scholar 

  150. Andoh, Y. et al. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution. J. Chem. Phys. 141, 165101 (2014).

    Article  ADS  Google Scholar 

  151. Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A. & Schulten, K. Molecular dynamics simulations of the complete satellite tobacco mosaic virus. Structure 14, 437–449 (2006).

    Article  Google Scholar 

  152. Singh, A. R., Kosmrlj, A. & Bruinsma, R. Finite temperature phase behavior of viral capsids as oriented particle shells. Phys. Rev. Lett. 124, 158101 (2020).

    Article  ADS  Google Scholar 

  153. Battisti, A. J. Structural Studies of Pleomorphic Viruses. PhD thesis, Purdue Univ. (2011).

  154. Overby, A. K., Pettersson, R. F., Grunewald, K. & Huiskonen, J. T. Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proc. Natl Acad. Sci. USA 105, 2375–2379 (2008).

    Article  ADS  Google Scholar 

  155. Prangishvili, D., Forterre, P. & Garrett, R. A. Viruses of the Archaea: a unifying view. Nat. Rev. Microbiol. 4, 837–848 (2006).

    Article  Google Scholar 

  156. Perotti, L. E. et al. Useful scars: physics of the capsids of archaeal viruses. Phys. Rev. E 94, 012404 (2016).

    Article  ADS  Google Scholar 

  157. Hochstein, R. et al. Structural studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of spindle- shaped viruses. Proc. Natl Acad. Sci. USA 115, 2120–2125 (2018).

    Article  Google Scholar 

  158. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    Article  Google Scholar 

  159. Heath, G. R. & Scheuring, S. High-speed AFM height spectroscopy reveals μs-dynamics of unlabeled biomolecules. Nat. Commun. 9, 4983 (2018).

    Article  ADS  Google Scholar 

  160. Maity, S. et al. Caught in the act: mechanistic insight into supramolecular polymerization-driven self-replication from real-time visualization. J. Am. Chem. Soc. 142, 13709–13717 (2020).

    Article  Google Scholar 

  161. Tiwary, P. & Parrinello, M. From metadynamics to dynamics. Phys. Rev. Lett. 111, 230602 (2013).

    Article  ADS  Google Scholar 

  162. Perkett, M. R. & Hagan, M. F. Using Markov state models to study self-assembly. J. Chem. Phys. 140, 214101 (2014).

    Article  ADS  Google Scholar 

  163. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

    Article  Google Scholar 

  164. Mateu, M. G. Introduction: the structural basis of virus function. Sub-Cell. Biochem. 68, 3–51 (2013).

    Article  Google Scholar 

  165. Cong, Y., Kriegenburg, F., de Haan, C. A. M. & Reggiori, F. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers. Sci. Rep. 7, 5740 (2017).

    Article  ADS  Google Scholar 

  166. Yang, J. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat. Commun. 11, 4541 (2020).

    Article  ADS  Google Scholar 

  167. Koch, C. et al. Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies. Beilstein J. Nanotechnol. 7, 613–629 (2016).

    Article  Google Scholar 

  168. Garmann, R. F., Comas-Garcia, M., Gopal, A., Knobler, C. M. & Gelbart, W. M. The assembly pathway of an icosahedral single-stranded RNA virus depends on the strength of inter-subunit attractions. J. Mol. Biol. 426, 1050–1060 (2014).

    Article  Google Scholar 

  169. Ryu, W.-S. in Molecular Virology of Human Pathogenic Viruses (ed. Ryu, W.-S.) 31–45 (Academic, 2017).

  170. Yin, J. & Redovich, J. Kinetic modeling of virus growth in cells. Microbiol. Mol. Biol. Rev. 82, e00066–00017 (2018).

    Article  Google Scholar 

  171. Liu, S.-L., Wang, Z.-G., Zhang, Z.-L. & Pang, D.-W. Tracking single viruses infecting their host cells using quantum dots. Chem. Soc. Rev. 45, 1211–1224 (2016).

    Article  Google Scholar 

  172. Batinovic, S. et al. Bacteriophages in natural and artificial environments. Pathogens 8, 100 (2019).

    Article  Google Scholar 

  173. Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).

    Article  Google Scholar 

  174. Bernal, J. D. & Fankuchen, I. Structure types of protein crystals from virus-infected plants. Nature 139, 923–924 (1937).

    Article  ADS  Google Scholar 

  175. Rossmann, M. G. Structure of viruses: a short history. Q. Rev. Biophys. 46, 133–180 (2013).

    Article  Google Scholar 

  176. Kausche, G. A., Pfankuch, E. & Ruska, H. Die Sichtbarmachung von pflanzlichem virus im Übermikroskop. Naturwissenschaften 27, 292–299 (1939).

    Article  ADS  Google Scholar 

  177. Kaelber, J. T., Hryc, C. F. & Chiu, W. Electron cryomicroscopy of viruses at near-atomic resolutions. Annu. Rev. Virol. 4, 287–308 (2017).

    Article  Google Scholar 

  178. Jardetzky, O., Akasaka, K., Vogel, D., Morris, S. & Holmes, K. C. Unusual segmental flexibility in a region of tobacco mosaic virus coat protein. Nature 273, 564–566 (1978).

    Article  ADS  Google Scholar 

  179. Hemminga, M. A., Veeman, W. S., Hilhorst, H. W. & Schaafsma, T. J. Magic angle spinning carbon-13 NMR of tobacco mosaic virus. An application of the high-resolution solid-state NMR spectroscopy to very large biological systems. Biophys. J. 35, 463–470 (1981).

    Article  Google Scholar 

  180. Quinn, C. M. et al. Magic angle spinning NMR of viruses. Prog. Nucl. Magn. Reson. Spectrosc. 86-87, 21–40 (2015).

    Article  Google Scholar 

  181. DeBlois, R. W. & Wesley, R. K. Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J. Virol. 23, 227–233 (1977).

    Article  Google Scholar 

  182. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  Google Scholar 

  183. Piontek, M. C. & Roos, W. H. Atomic force microscopy: an introduction. Methods Mol. Biol. 1665, 243–258 (2017).

    Article  Google Scholar 

  184. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  185. Hashemi Shabestari, M., Meijering, A. E. C., Roos, W. H., Wuite, G. J. L. & Peterman, E. J. G. in Methods in Enzymology Vol. 582 (eds Spies, M. & Chemla, Y. R.) 85–119 (Academic, 2017).

  186. Zlotnick, A., Aldrich, R., Johnson, J. M., Ceres, P. & Young, M. J. Mechanism of capsid assembly for an icosahedral plant virus. Virology 277, 450–456 (2000).

    Article  Google Scholar 

  187. Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423 (2018).

    Article  ADS  Google Scholar 

  188. Loo, J. A. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 16, 1–23 (1997).

    Article  ADS  Google Scholar 

  189. Uetrecht, C. et al. High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc. Natl Acad. Sci. USA 105, 9216–9220 (2008).

    Article  ADS  Google Scholar 

  190. Dülfer, J., Kadek, A., Kopicki, J.-D., Krichel, B. & Uetrecht, C. in Advances in Virus Research Vol. 105 (ed. Rey, F. A.) 189–238 (Academic, 2019).

  191. Sitters, G. et al. Acoustic force spectroscopy. Nat. Methods 12, 47–50 (2015).

    Article  Google Scholar 

  192. Tuukkanen, A. T., Spilotros, A. & Svergun, D. I. Progress in small-angle scattering from biological solutions at high-brilliance synchrotrons. IUCrJ 4, 518–528 (2017).

    Article  Google Scholar 

  193. Roos, W. H. & Wuite, G. J. L. Nanoindentation studies reveal material properties of viruses. Adv. Mater. 21, 1187–1192 (2009).

    Article  Google Scholar 

  194. Zlotnick, A. To build a virus capsid — an equilibrium-model of the self-assembly of polyhedral protein complexes. J. Mol. Biol. 241, 59–67 (1994).

    Article  Google Scholar 

  195. Hagan, M. F. & Elrad, O. M. Understanding the concentration dependence of viral capsid assembly kinetics — the origin of the lag time and identifying the critical nucleus size. Biophys. J. 98, 1065–1074 (2010).

    Article  ADS  Google Scholar 

  196. Rolfsson, O. et al. Direct evidence for packaging signal-mediated assembly of bacteriophage MS2. J. Mol. Biol. 428, 431–448 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank C. Knobler for a critical reading of the manuscript, and C. Uetrecht and S. Maity for their input. W.H.R. is supported by a VIDI grant from the Nederlandse Oganizatie voor Wetenschappelijk Onderzoek. R.B. is supported by the NSF-DMR under CMMT grant 1836404.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the article.

Corresponding author

Correspondence to Wouter H. Roos.

Ethics declarations

Competing interests

G.J.L.W. declares financial interest in fluorescence optical tweezers and acoustic force spectroscopy approaches which are patented and licensed to LUMICKS B.V.

Additional information

Peer review information

Nature Reviews Physics thanks Kazunori Matsuura and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Capsids

Protein shells that surround the viral genome.

Triangulation numbers

Classification system, developed by Caspar and Klug, for icosahedral viruses. T-numbers are integers and contain information on the number of protein subunits that make up a capsid.

Virions

Viral particles, composed of both capsid proteins and the viral genome, that can successfully infect cells.

Kinetic traps

Kinetically trapped assembly intermediates that are dead-end products and do not lead to the formation of correctly assembled viral particles.

Bacteriophage

Also called phages, these are viruses that infect bacteria.

Procapsids

Immature and precursor viral capsid structures of certain viruses.

Host cells

Cells infected by virions.

Archaeal

Next to bacteria and eukaryotes, archaea represent one of the three domains of life.

Prokaryotic

A prokaryote is a single cell organism lacking a nucleus, that is, bacteria or archaea.

Eukaryotic

A eukaryote is an organism built up from eukaryotic cells, that is, from cells that possess a nucleus. Animals, plants and fungi are examples of eukaryotes.

Nucleotides

Building blocks of nucleic acids (of DNA or RNA).

Secondary structure

The set of formed base pairs in a nucleic acid strand; in other words, the set of links between nucleotides in the strand.

PolyU

Nucleic acid strand consisting solely of copies of the uracil (U) nucleotide.

PolyA

Nucleic acid strand consisting solely of copies of the adenine (A) nucleotide.

Langmuir adsorption theory

Model describing key physics of molecular interactions at interfaces.

Gag protein

Group-specific antigen protein. The Gag polyprotein makes up the inner shell of immature retroviral particles, and during maturation Gag is proteolytically cleaved into MA (matrix), CA (capsid) and NC (nucleocapsid) domains leading to the formation of a mature virion.

Nucleocapsid domain

Viral protein coat surrounding the viral genome. One of the three domains resulting from Gag protein cleavage.

Retroviruses

Group of viruses with a viral RNA genome. During infection, DNA is produced using the viral RNA.

Maturation

Process of conformational changes and/or proteolytic cleavage of viral proteins transforming the immature particle into a mature, infectious particle.

Cytoplasmic membrane

Membrane enclosing the cellular cytoplasm. It is the outer membrane of eukaryotic cells and the first cellular contact point for viruses during infection.

Endosome

Intracellular vesicles. Certain viruses are internalized into their host cell in an endosome and subsequently leave this endosome to continue the infectious pathway.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruinsma, R.F., Wuite, G.J.L. & Roos, W.H. Physics of viral dynamics. Nat Rev Phys 3, 76–91 (2021). https://doi.org/10.1038/s42254-020-00267-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-020-00267-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing