Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable heat harvesting via thermal nonlinearity

Abstract

Converting the pervasive low-grade environmental waste heat of approximately 200 EJ globally per year (equivalent to 27 Gt of CO2 emission) into electricity promises energy sustainability and would contribute to carbon neutrality. Heat harvesting technologies capture this waste heat through thermodynamic heat engines across various working media. Conventional heat harvesting approaches have primarily focused on limited incremental improvements in thermophysical output. However, advances in thermal nonlinearity and material anisotropy offer substantial gains but are often overlooked. In this Perspective, we delve into the role of intrinsic thermal nonlinearity with multiscale physical understanding to transform heat or thermal energy harvesting technologies from linear to nonlinear processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nonlinearity is better than linearity.
Fig. 2: Fundamentals and benchmarks of nonlinear heat harvesting.
Fig. 3: Multiscale structure topology and mechanisms for nonlinear heat harvesting.

Similar content being viewed by others

References

  1. Johnson, I., Choate, W. T. & Davidson, A. Waste Heat Recovery. Technology and Opportunities in U.S. Industry. OSTI ID 1218716 (BCS, Inc., 2008).

  2. International Energy Agency. Energy Efficiency 2022 (IEA, 2022).

  3. International Energy Agency. Key World Energy Statistics 2021 (IEA, 2021).

  4. Zhou, C. et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 20, 1378–1384 (2021).

    Article  ADS  Google Scholar 

  5. Yan, Q. & Kanatzidis, M. G. High-performance thermoelectrics and challenges for practical devices. Nat. Mater. 21, 503–513 (2022).

    Article  ADS  Google Scholar 

  6. He, J. & Tritt, T. M. Advances in thermoelectric materials research: looking back and moving forward. Science 357, 1369 (2017).

    Article  Google Scholar 

  7. Bowen, C. R. et al. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014).

    Article  Google Scholar 

  8. Yang, Y. Pyroelectricity gain in multilayers. Nat. Energy 7, 1007–1008 (2022).

    Article  ADS  Google Scholar 

  9. Li, W. et al. Improper molecular ferroelectrics with simultaneous ultrahigh pyroelectricity and figures of merit. Sci. Adv. 7, eabe3068 (2021).

    Article  ADS  Google Scholar 

  10. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  ADS  Google Scholar 

  11. Tu, Y. et al. Plausible photomolecular effect leading to water evaporation exceeding the thermal limit. Proc. Natl Acad. Sci. USA 120, e2312751120 (2023).

    Article  Google Scholar 

  12. Peng, J. et al. New cambered-surface based drip generator: a drop of water generates 50 µA current without pre-charging. Nano Energy 102, 107694 (2022).

    Article  Google Scholar 

  13. Maharjan, P. et al. Brachistochrone bowl-inspired hybrid nanogenerator integrated with physio-electrochemical multisensors for self-sustainable smart pool monitoring systems. Adv. Energy Mater. 13, 2203849 (2023).

    Article  Google Scholar 

  14. Ding, T., Zhou, Y., Ong, W. L. & Ho, G. W. Hybrid solar-driven interfacial evaporation systems: beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021).

    Article  Google Scholar 

  15. Dongare, P. D., Alabastri, A., Neumann, O., Nordlander, P. & Halas, N. J. Solar thermal desalination as a nonlinear optical process. Proc. Natl Acad. Sci. USA 116, 13182–13187 (2019). This work utilizes the exponential temperature dependence of water vapour saturation pressure under nonlinear heating to achieve a high solar-driven interfacial water evaporation rate.

    Article  ADS  Google Scholar 

  16. Zhou, Y. et al. Giant polarization ripple in transverse pyroelectricity. Nat. Commun. 14, 426 (2023). This work reveals the thermal nonlinearity of spontaneous polarization changes in general pyroelectrics via transverse heat generation and propagation decoupling.

    Article  ADS  Google Scholar 

  17. Pandya, S. et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 17, 432–438 (2018).

    Article  ADS  Google Scholar 

  18. Zhang, Y. et al. Thermal energy harvesting using pyroelectric-electrochemical coupling in ferroelectric materials. Joule 4, 301–309 (2020).

    Article  Google Scholar 

  19. Szigeti, B. Temperature dependence of pyroelectricity. Phys. Rev. Lett. 35, 1532–1534 (1975). This work reveals the cubic temperature dependence of primary and secondary pyroelectricity owing to the anharmonic potential.

    Article  ADS  Google Scholar 

  20. Chang, C. et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 360, 778 (2018).

    Article  Google Scholar 

  21. Lee, S. et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 355, 371–374 (2017).

    Article  ADS  Google Scholar 

  22. Yu, B. et al. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting. Science 370, 342–346 (2020).

    Article  ADS  Google Scholar 

  23. Han, C. G. et al. Giant thermopower of ionic gelatin near room temperature. Science 368, 1091–1098 (2020). This work investigates the synergy of thermogalvanic and thermodiffusion effects in improving ionic thermoelectric thermopower.

    Article  ADS  Google Scholar 

  24. Waske, A. et al. Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology. Nat. Energy 4, 68–74 (2019).

    Article  ADS  Google Scholar 

  25. Liu, X. et al. High-performance thermomagnetic generator controlled by a magnetocaloric switch. Nat. Commun. 14, 4811 (2023).

    Article  ADS  Google Scholar 

  26. Tang, K. et al. Temperature-adaptive radiative coating for all-season household thermal regulation. Science 374, 1504–1509 (2021). This work shows the passive absorbance–emittance tunability via the nonlinear metal–insulator transition of WxV1−xO2 coatings around the ambient temperature.

    Article  ADS  Google Scholar 

  27. Wang, S. et al. Scalable thermochromic smart windows with passive radiative cooling regulation. Science 374, 1501–1504 (2021).

    Article  ADS  Google Scholar 

  28. Arena, S., Casti, E., Gasia, J., Cabeza, L. F. & Cau, G. Numerical simulation of a finned-tube LHTES system: influence of the mushy zone constant on the phase change behaviour. Energy Procedia 126, 517–524 (2017).

    Article  Google Scholar 

  29. Cattaneo, C. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948).

    MathSciNet  Google Scholar 

  30. Joseph, D. D. & Preziosi, L. Heat waves. Rev. Mod. Phys. 61, 41–73 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  31. Guo, Y. & Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 595, 1–44 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  32. Callaway, J. Model for lattice thermal conductivity at low temperatures. Phys. Rev. 113, 1046–1051 (1959).

    Article  ADS  Google Scholar 

  33. Jiang, Y. et al. Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials. Nat. Commun. 13, 6087 (2022).

    Article  ADS  Google Scholar 

  34. Shen, M. et al. Thermoelectric coupling effect in BNT-BZT-xGaN pyroelectric ceramics for low-grade temperature-driven energy harvesting. Nat. Commun. 14, 7907 (2023).

    Article  ADS  Google Scholar 

  35. Byeon, D. et al. Discovery of colossal Seebeck effect in metallic Cu2Se. Nat. Commun. 10, 72 (2019).

    Article  ADS  Google Scholar 

  36. Zhang, Z. et al. Cu2Se-based liquid-like thermoelectric materials: looking back and stepping forward. Energy Environ. Sci. 13, 3307–3329 (2020).

    Article  Google Scholar 

  37. Li, H., Bowen, C. R. & Yang, Y. Phase transition enhanced pyroelectric nanogenerators for self-powered temperature sensors. Nano Energy 102, 107657 (2022).

    Article  Google Scholar 

  38. Li, T. et al. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. Nat. Energy 3, 148–156 (2018).

    Article  ADS  Google Scholar 

  39. Fu, C. et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 6, 8144 (2015).

    Article  ADS  Google Scholar 

  40. Ding, T. et al. Hybrid photothermal pyroelectric and thermogalvanic generator for multisituation low grade heat harvesting. Adv. Energy Mater. 8, 1802397 (2018).

    Article  Google Scholar 

  41. Lee, J. et al. Enhanced pyroelectric conversion of thermal radiation energy: energy harvesting and non-contact proximity sensor. Nano Energy 97, 107178 (2022).

    Article  Google Scholar 

  42. Gokana, M. R., Wu, C.-M., Motora, K. G., Qi, J. Y. & Yen, W.-T. Effects of patterned electrode on near infrared light-triggered cesium tungsten bronze/poly(vinylidene)fluoride nanocomposite-based pyroelectric nanogenerator for energy harvesting. J. Power Sources 536, 231524 (2022).

    Article  Google Scholar 

  43. Park, T. et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure. ACS Nano 9, 11830–11839 (2015).

    Article  Google Scholar 

  44. Zhao, T. et al. An infrared-driven flexible pyroelectric generator for non-contact energy harvester. Nanoscale 8, 8111–8117 (2016).

    Article  ADS  Google Scholar 

  45. Ma, N., Zhang, K. & Yang, Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv. Mater. 29, 1703694 (2017).

    Article  Google Scholar 

  46. Song, K., Ma, N., Mishra, Y. K., Adelung, R. & Yang, Y. Achieving light-induced ultrahigh pyroelectric charge density toward self-powered UV light detection. Adv. Electron. Mater. 5, 1800413 (2019).

    Article  Google Scholar 

  47. Jurado, J. P. et al. Solar harvesting: a unique opportunity for organic thermoelectrics? Adv. Energy Mater. 9, 1902385 (2019).

    Article  Google Scholar 

  48. Li, K. et al. Enhanced thermoelectric performance and tunable polarity in 2D Cu2S-phenol superlattices composites for solar energy conversion. Nano Energy 84, 105902 (2021).

    Article  Google Scholar 

  49. Cho, C., Kim, B., Park, S. & Kim, E. Bisulfate transport in hydrogels for self-healable and transparent thermoelectric harvesting films. Energy Environ. Sci. 15, 2049–2060 (2022).

    Article  Google Scholar 

  50. Wei, M. et al. Directional thermal diffusion realizing inorganic Sb2Te3/Te hybrid thin films with high thermoelectric performance and flexibility. Adv. Funct. Mater. 32, 2207903 (2022).

    Article  Google Scholar 

  51. Chen, C. et al. Janus helical ribbon structure of ordered nanowire films for flexible solar thermoelectric devices. Adv. Mater. 34, 2206364 (2022).

    Article  Google Scholar 

  52. Lu, Y. et al. Staggered-layer-boosted flexible Bi2Te3 films with high thermoelectric performance. Nat. Nanotechnol. 18, 1281–1288 (2023). This work realizes high thermoelectricity and flexibility in mechanically exfoliated thin films alongside spatial in-plane thermal regulation via atomic and macroscale topology manipulations.

    Article  ADS  Google Scholar 

  53. Zhu, L., Gao, M., Peh, C. K. N., Wang, X. & Ho, G. W. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8, 1702149 (2018).

    Article  Google Scholar 

  54. Meng, F. L. et al. Modular and deformable steam electricity co-generation system with photothermal, water and electrochemical tunable multilayers. Adv. Funct. Mater. 30, 2002867 (2020).

    Article  Google Scholar 

  55. Yang, M.-Q., Tan, C. F., Lu, W., Zeng, K. & Ho, G. W. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv. Funct. Mater. 30, 2004460 (2020).

    Article  Google Scholar 

  56. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  ADS  Google Scholar 

  57. Born, M. On the quantum theory of pyroelectricity. Rev. Mod. Phys. 17, 245–251 (1945).

    Article  ADS  MathSciNet  Google Scholar 

  58. Mankowsky, R., von Hoegen, A., Forst, M. & Cavalleri, A. Ultrafast reversal of the ferroelectric polarization. Phys. Rev. Lett. 118, 197601 (2017).

    Article  ADS  Google Scholar 

  59. Henstridge, M., Först, M., Rowe, E., Fechner, M. & Cavalleri, A. Nonlocal nonlinear phononics. Nat. Phys. 18, 457–461 (2022).

    Article  Google Scholar 

  60. Meirzadeh, E. et al. Surface pyroelectricity in cubic SrTiO3. Adv. Mater. 31, 1904733 (2019).

    Article  Google Scholar 

  61. Jiang, Y. et al. Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett. 13, 2851–2856 (2013).

    Article  ADS  Google Scholar 

  62. Huang, X. et al. Stacking fault-induced strengthening mechanism in thermoelectric semiconductor Bi2Te3. Matter 6, 3087–3098 (2023).

    Article  Google Scholar 

  63. Zhou, Y. et al. Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Sci. Adv. 9, eadf5701 (2023). This work unravels the quasi-linear coupling characteristics between conductive heat flux and electrical power in non-unity geometric thermoelectrics.

    Article  ADS  Google Scholar 

  64. Zhou, Y. et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 77, 105102 (2020).

    Article  Google Scholar 

  65. Mori, T. A flexible feature for the long-reigning thermoelectric champion bismuth telluride. Nat. Nanotechnol. 18, 1255–1256 (2023).

    Article  ADS  Google Scholar 

  66. Kang, M. G. & Guo, L. J. Nanoimprinted semitransparent metal electrodes and their application in organic light‐emitting diodes. Adv. Mater. 19, 1391–1396 (2007).

    Article  Google Scholar 

  67. Lee, H. B., Jin, W.-Y., Ovhal, M. M., Kumar, N. & Kang, J.-W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087–1110 (2019).

    Article  Google Scholar 

  68. Zabek, D., Taylor, J., Boulbar, E. L. & Bowen, C. R. Micropatterning of flexible and free standing polyvinylidene difluoride (PVDF) films for enhanced pyroelectric energy transformation. Adv. Energy Mater. 5, 1401891 (2015).

    Article  Google Scholar 

  69. Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2020).

    Article  ADS  Google Scholar 

  70. Padilla, W. J. & Averitt, R. D. Imaging with metamaterials. Nat. Rev. Phys. 4, 85–100 (2022).

    Article  Google Scholar 

  71. Stewart, J. W., Nebabu, T. & Mikkelsen, M. H. Control of nanoscale heat generation with lithography-free metasurface absorbers. Nano Lett. 22, 5151–5157 (2022).

    Article  ADS  Google Scholar 

  72. Yang, Y. et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838 (2012).

    Article  ADS  Google Scholar 

  73. Jiang, J. et al. Giant pyroelectricity in nanomembranes. Nature 607, 480–485 (2022).

    Article  ADS  Google Scholar 

  74. Liu, J. & Pantelides, S. T. Mechanisms of pyroelectricity in three- and two-dimensional materials. Phys. Rev. Lett. 120, 207602 (2018). This work reveals the dominant factor of rigid-ion model and/or electron–phonon renormalization in boosting the pyroelectricity of 3D and 2D pyroelectric materials.

    Article  ADS  Google Scholar 

  75. Lheritier, P. et al. Large harvested energy with non-linear pyroelectric modules. Nature 609, 718–721 (2022). This work realizes nonlinear pyroelectric heat harvesting via the applied thermal field (entropy–temperature plane) and applied electric field (polarization–electric field plane) alongside multilayered capacitors around the ambient or Curie temperature.

    Article  ADS  Google Scholar 

  76. Olsen, R. B., Bruno, D. A. & Briscoe, J. M. Pyroelectric conversion cycles. J. Appl. Phys. 58, 4709–4716 (1985).

    Article  ADS  Google Scholar 

  77. Ng, M. H. V. et al. in Comprehensive Energy Systems Vol. 2 (ed. Dincer, I.) Ch. 2.23, 720–759 (Elsevier, 2018).

  78. Kim, J. et al. High-performance piezoelectric, pyroelectric, and triboelectric nanogenerators based on P(VDF-TrFE) with controlled crystallinity and dipole alignment. Adv. Funct. Mater. 27, 1700702 (2017).

    Article  Google Scholar 

  79. Navid, A., Lynch, C. S. & Pilon, L. Purified and porous poly(vinylidene fluoride-trifluoroethylene) thin films for pyroelectric infrared sensing and energy harvesting. Smart Mater. Struct. 19, 055006 (2010).

    Article  ADS  Google Scholar 

  80. Wang, Q. et al. Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. Nano Energy 60, 144–152 (2019).

    Article  ADS  Google Scholar 

  81. Yan, M. et al. Porous ferroelectric materials for energy technologies: current status and future perspectives. Energy Environ. Sci. 14, 6158–6190 (2021).

    Article  Google Scholar 

  82. Feng, J. et al. Porous thermoelectric Zintl: YbCd2Sb2. ACS Appl. Energy Mater. 4, 913–920 (2021).

    Article  Google Scholar 

  83. Zhang, C., Zeng, Z., Zhu, Z., Karami, M. & Chen, X. Impact of leakage for electricity generation by pyroelectric converter. Phys. Rev. Appl. 14, 064079 (2020).

    Article  ADS  Google Scholar 

  84. Zhou, Y. et al. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. Natl Sci. Rev. 10, nwad186 (2023).

    Article  Google Scholar 

  85. Zhou, Y. & Ho, G. W. Pyroelectric heat harvesting, what’s next. Next Energy 1, 100026 (2023).

    Article  Google Scholar 

  86. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).

    Article  ADS  Google Scholar 

  87. Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photon. 10, 611–616 (2016).

    Article  ADS  Google Scholar 

  88. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016). This work utilizes the synergistic effect of spatial thermal concentration and vapour diffusion to achieve a high solar water evaporation efficiency.

    Article  ADS  Google Scholar 

  89. Gao, T. et al. More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Sci. Bull. 67, 1572–1580 (2022).

    Article  Google Scholar 

  90. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  Google Scholar 

  91. Zhou, Y. et al. Dynamic piezo-thermoelectric generator for simultaneously harvesting mechanical and thermal energies. Nano Energy 69, 104397 (2020).

    Article  Google Scholar 

  92. Choo, S. et al. Geometric design of Cu2Se-based thermoelectric materials for enhancing power generation. Nat. Energy 9, 1105–1116 (2024).

    Google Scholar 

  93. Allen, P. B. & Heine, V. Theory of the temperature dependence of electronic band structures. J. Phys. C Solid State Phys. 9, 2305 (1976).

    Article  ADS  Google Scholar 

  94. Born, M. & Huang, K. in Dynamical Theory of Crystal Lattices Vol. 1 Ch. 6, 287–288 (Oxford Univ. Press, 1954).

  95. Li, H., Bowen, C. R., Dan, H. & Yang, Y. Pyroelectricity induced by Schottky interface above the Curie temperature of bulk materials. Joule 8, 401–415 (2024).

    Article  Google Scholar 

  96. Yang, L. et al. Suppressed thermal transport in silicon nanoribbons by inhomogeneous strain. Nature 629, 1021–1026 (2024).

    Article  ADS  Google Scholar 

  97. Fatuzzo, E., Kiess, H. & Nitsche, R. Theoretical efficiency of pyroelectric power converters. J. Appl. Phys. 37, 510–516 (1966).

    Article  ADS  Google Scholar 

  98. Goldsmid, H. J. & Sharp, J. W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 28, 869–872 (1999).

    Article  ADS  Google Scholar 

  99. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  ADS  Google Scholar 

  100. Han, S. et al. Strong phonon softening and avoided crossing in aliovalence-doped heavy-band thermoelectrics. Nat. Phys. 19, 1649–1657 (2023).

    Article  Google Scholar 

  101. Uchida, K.-I & Heremans, J. P. Thermoelectrics: from longitudinal to transverse. Joule 6, 2240–2245 (2022).

    Article  Google Scholar 

  102. Yang, G. et al. The role of spin in thermoelectricity. Nat. Rev. Phys. 5, 466–482 (2023).

    Article  Google Scholar 

  103. Zhu, H. et al. Understanding the asymmetrical thermoelectric performance for discovering promising thermoelectric materials. Sci. Adv. 5, eaav5813 (2019).

    Article  ADS  Google Scholar 

  104. Ivry, Y. et al. Enhanced pyroelectric effect in self-supported films of BaTiO3 with polycrystalline macrodomains. Appl. Phys. Lett. 90, 172905 (2007).

    Article  ADS  Google Scholar 

  105. Xu, L. et al. Free-form and multi-physical metamaterials with forward conformality-assisted tracing. Nat. Comput. Sci. 4, 532–541 (2024).

    Article  Google Scholar 

  106. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    Article  ADS  Google Scholar 

  107. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  ADS  Google Scholar 

  108. Biswas, K. et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012).

    Article  ADS  Google Scholar 

  109. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    Article  ADS  Google Scholar 

  110. Zhou, Y., Guo, Z. & He, J. Redesign high-performance flexible thermoelectrics: from mathematical algorithm to artificial cracks. Appl. Phys. Lett. 116, 043904 (2020).

    Article  ADS  Google Scholar 

  111. Xie, L. et al. Screening strategy for developing thermoelectric interface materials. Science 382, 921–928 (2023).

    Article  ADS  Google Scholar 

  112. Lara Ramos, D. A. et al. Design guidelines for micro-thermoelectric devices by finite element analysis. Adv. Sustain. Syst. 3, 1800093 (2019).

    Article  Google Scholar 

  113. Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    Article  ADS  Google Scholar 

  114. Wang, T., Zhang, C., Snoussi, H. & Zhang, G. Machine learning approaches for thermoelectric materials research. Adv. Funct. Mater. 30, 1906041 (2019).

    Article  Google Scholar 

  115. Gaultois, M. W. et al. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 25, 2911–2920 (2013).

    Article  Google Scholar 

  116. Yin, L. et al. CALPHAD accelerated design of advanced full-Zintl thermoelectric device. Nat. Commun. 15, 1468 (2024).

    Article  ADS  Google Scholar 

  117. Bastek, J.-H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).

    Article  Google Scholar 

  118. Luo, S. et al. Experiment-free exoskeleton assistance via learning in simulation. Nature 630, 353–359 (2024).

    Article  ADS  Google Scholar 

  119. APRE CDTI. Guiding Notes to Use the TRL Self-Assessment Tool. Report No. H2020-101005071 (BRIDGE2HE, 2020).

  120. US Department of Energy. Technology Readiness Assessment Guide. Report No. DOE G 413.3-4A (US Department of Energy, 2011).

  121. US Government Accountability Office. Technology Readiness Assessment Guide: Best Practices for Evaluating the Readiness of Technology for Use in Acquisition Programs and Projects. Report No. GAO-20-48G (US Government Accountability Office, 2020).

  122. Xu, G. et al. Tunable analog thermal material. Nat. Commun. 11, 6028 (2020).

    Article  ADS  Google Scholar 

  123. Guo, J., Xu, G., Tian, D., Qu, Z. & Qiu, C. W. Passive ultra-conductive thermal metamaterials. Adv. Mater. 34, 2200329 (2022).

    Article  Google Scholar 

  124. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article  ADS  Google Scholar 

  125. Karthikeyan, V. et al. Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nat. Commun. 14, 2069 (2023).

    Article  ADS  Google Scholar 

  126. Xu, L. et al. Blackhole-inspired thermal trapping with graded heat-conduction metadevices. Natl Sci. Rev. 10, nwac159 (2022).

    Article  Google Scholar 

  127. Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023).

    Article  ADS  Google Scholar 

  128. Kai, Y. et al. Dynamic diagnosis of metamaterials through laser-induced vibrational signatures. Nature 623, 514–521 (2023).

    Article  ADS  Google Scholar 

  129. Ren, W. et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci. Adv. 7, eabe0586 (2021).

    Article  ADS  Google Scholar 

  130. Yang, Q. et al. Flexible thermoelectrics based on ductile semiconductors. Science 377, 854–858 (2022).

    Article  ADS  Google Scholar 

  131. Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020).

    Article  ADS  Google Scholar 

  132. Yu, C. & Chau, K. T. Thermoelectric automotive waste heat energy recovery using maximum power point tracking. Energy Convers. Manag. 50, 1506–1512 (2009).

    Article  ADS  Google Scholar 

  133. Meng, J.-H., Wang, X.-D. & Chen, W.-H. Performance investigation and design optimization of a thermoelectric generator applied in automobile exhaust waste heat recovery. Energy Convers. Manag. 120, 71–80 (2016).

    Article  ADS  Google Scholar 

  134. LeBlanc, S., Yee, S. K., Scullin, M. L., Dames, C. & Goodson, K. E. Material and manufacturing cost considerations for thermoelectrics. Renew. Sustain. Energy Rev. 32, 313–327 (2014).

    Article  Google Scholar 

  135. Amatya, R. & Ram, R. J. Trend for thermoelectric materials and their earth abundance. J. Electron. Mater. 41, 1011–1019 (2011).

    Article  ADS  Google Scholar 

  136. Yee, S. K., LeBlanc, S., Goodson, K. E. & Dames, C. $ per W metrics for thermoelectric power generation: beyond ZT. Energy Environ. Sci. 6, 2561–2571 (2013).

    Article  Google Scholar 

  137. Lee, W. H. A Pressure Iteration Scheme for Two-Phase Flow Modeling. Report No. 978-981-4460-27-9 (World Scientific, 2013).

  138. Gong, F. et al. Sustainable, decentralized water treatment system fabricated from domestic waste materials and ultrafast-reduced graphene oxide. J. Environ. Chem. Eng. 11, 110480 (2023).

    Article  Google Scholar 

  139. Jachalke, S. et al. How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4, 021303 (2017).

    Article  ADS  Google Scholar 

  140. Salazar, P. F., Kumar, S. & Cola, B. A. Design and optimization of thermo-electrochemical cells. J. Appl. Electrochem. 44, 325–336 (2014).

    Article  Google Scholar 

  141. Kishore, R. A. et al. Linear thermomagnetic energy harvester for low-grade thermal energy harvesting. J. Appl. Phys. 127, 044501 (2020).

    Article  ADS  Google Scholar 

  142. Yang, S. E. et al. Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy 81, 105638 (2021).

    Article  Google Scholar 

  143. Kim, K. et al. Heat-dissipation design and 3D printing of ternary silver chalcogenide-based thermoelectric legs for enhancing power generation performance. Adv. Sci. 11, e2402934 (2024).

    Article  Google Scholar 

  144. New York State Energy Research and Development Authority. Technology & commercialization readiness level calculator. https://portal.nyserda.ny.gov/servlet/servlet.FileDownload?file=00Pt000000I2HX3EAN (2015).

  145. United Nations. Resolution adopted by the general assembly on 6 July 2017: work of the statistical commission pertaining to the 2030 Agenda for Sustainable Development. United Nations https://ggim.un.org/documents/a_res_71_313.pdf (2017).

  146. Zhao, L. et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020).

    Article  Google Scholar 

  147. Li, J. et al. Printable, emissivity-adaptive and albedo-optimized covering for year-round energy saving. Joule 7, 2552–2567 (2023).

    Article  Google Scholar 

  148. Zhang, Z. et al. Diffusion metamaterials. Nat. Rev. Phys. 5, 218–235 (2023).

    Article  Google Scholar 

  149. Yang, S., Liu, M., Zhao, C., Fan, S. & Qiu, C.-W. Nonreciprocal thermal photonics. Nat. Photon. 18, 412–424 (2024).

    Article  ADS  Google Scholar 

  150. Zhang, Z. & Zhu, L. Nonreciprocal thermal photonics for energy conversion and radiative heat transfer. Phys. Rev. Appl. 18, 027001 (2022).

    Article  ADS  Google Scholar 

  151. Nam Sung, K., Flautner, K., Blaauw, D. & Mudge, T. Circuit and microarchitectural techniques for reducing cache leakage power. IEEE Trans. Very Large Scale Integr. VLSI Syst. 12, 167–184 (2004).

    Article  Google Scholar 

  152. Wu, C.-J. Architectural thermal energy harvesting opportunities for sustainable computing. IEEE Comput. Archit. Lett. 13, 65–68 (2014).

    Article  Google Scholar 

  153. McCord, P. Plot of altitude vs temperature. Chembook http://chembook.org/page-nonav.php?chnum=2&sect=3 (2019).

Download references

Acknowledgements

This research was supported by A*STAR, RIE2025 Manufacturing, Trade and Connectivity (MTC) (M22K2c0081), the Advanced Research and Technology Innovation Centre (ARTIC) and the National University of Singapore (A-0005947-24-00). J.H. acknowledges support from the National Natural Science Foundation of China (11934007) and the Outstanding Talents Training Fund in Shenzhen (202108). T.D. acknowledges support from the National Natural Science Foundation of China (52472088). C.-W.Q. acknowledges support from Ministry of Education, Singapore (A-8000107-01-00) and the Nanotech Energy and Environment Platform, National University of Singapore (Suzhou) Research Institute via Science and Technology Project of Jiangsu Province (BZ2022056). This research is also partially supported by the National Research Foundation, Singapore (NRF) under NRF’s Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation μ-Electronics (SHINE) Centre funding programme.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and G.W.H. conceptualized the manuscript. C.-W.Q., J.H. and G.W.H. supervised the project. Y.Z., T.D., G.X. and S.Y. researched data for the article. Y.Z. and T.D. conceived and illustrated the figures and tables. Y.Z. wrote the paper with input and comments from all authors. All authors contributed to the discussion and editing of the content of the manuscript before submission.

Corresponding authors

Correspondence to Jiaqing He or Ghim Wei Ho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Chris Bowen, Weishu Liu and Qi Zhao for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Ding, T., Xu, G. et al. Sustainable heat harvesting via thermal nonlinearity. Nat Rev Phys 6, 769–783 (2024). https://doi.org/10.1038/s42254-024-00771-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-024-00771-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing