Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The attoscience of strong-field-driven solids

Abstract

The ultrafast dynamics of electrons in solid-state systems have garnered considerable attention recently, driven by technological advancements in the generation of short laser pulses from femtosecond down to attosecond durations. Techniques such as high-order harmonic generation (HHG) and attosecond transient absorption and reflection spectroscopy (ATAS and ATRS) provide valuable insights into sub-cycle dynamics, rendering the interaction of solids with intense laser fields a pivotal area of research. However, discrepancies in the explanation of the underlying mechanisms remain, requiring further analysis. This Perspective focuses on the relationship between the above techniques, highlighting their efficacy in probing charge dynamics induced by intense laser pulses in solid-state systems. We emphasize the importance of unified theoretical frameworks to advance our understanding of the strong-field attoscience of solids, while recognizing points of disparity between theoretical descriptions and experimental findings. By drawing attention to the complementary nature of HHG and both ATAS and ATRS, and by illustrating the key applications enabled by them, this Perspective aims to motivate stronger collaborations and concerted efforts to bridge the existing gaps between theory and experiment and propel the field forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light–matter interaction for high-order harmonic generation and attosecond transient absorption and reflection spectroscopy.
Fig. 2: Experimental and theoretical results exemplifying strong-field dynamics in solids accessed by ATAS and HHG.
Fig. 3: Examples of applications within the attoscience of solids.

Similar content being viewed by others

References

  1. Agostini, P., Fabre, F., Mainfray, G., Petite, G. & Rahman, N. K. Free–free transitions following six-photon ionization of xenon atoms. Phys. Rev. Lett. 42, 1127–1130 (1979).

    Article  ADS  Google Scholar 

  2. Voronov, G. S. & Delone, N. B. Ionization of the xenon atom by the electric field of ruby laser emission. JETP Lett. 1, 66–68 (1965).

    ADS  Google Scholar 

  3. Voronov, G. S. & Delone, N. B. Many-photon ionization of the xenon atom by ruby laser radiation. Sov. Phys. JETP 23, 54–58 (1966).

    ADS  Google Scholar 

  4. Chin, S. L., Farkas, G. & Yergeau, F. Observation of Kr and Xe ions created by intense nanosecond CO2 laser pulses. J. Phys. B At. Mol. Opt. Phys. 16, L223 (1983).

    Article  ADS  Google Scholar 

  5. Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    Article  ADS  Google Scholar 

  6. Lewenstein, M., Balcou, P., Ivanov, M. Y., L’Huillier, A. & Corkum, P. B. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994).

    Article  ADS  Google Scholar 

  7. Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009).

    Article  ADS  Google Scholar 

  8. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).

    Article  ADS  Google Scholar 

  9. Antoine, P., L’Huillier, A. & Lewenstein, M. Attosecond pulse trains using high-order harmonics. Phys. Rev. Lett. 77, 1234–1237 (1996).

    Article  ADS  Google Scholar 

  10. Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).

    Article  ADS  Google Scholar 

  11. Geneaux, R., Marroux, H. J. B., Guggenmos, A., Neumark, D. M. & Leone, S. R. Transient absorption spectroscopy using high harmonic generation: a review of ultrafast X-ray dynamics in molecules and solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20170463 (2019).

    Article  ADS  Google Scholar 

  12. Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

    Article  Google Scholar 

  13. Luu, T. T. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

    Article  ADS  Google Scholar 

  14. Bauer, D. & Hansen, K. K. High-harmonic generation in solids with and without topological edge states. Phys. Rev. Lett. 120, 177401 (2018).

    Article  ADS  Google Scholar 

  15. Garg, M., Kim, H. Y. & Goulielmakis, E. Ultimate waveform reproducibility of extreme-ultraviolet pulses by high-harmonic generation in quartz. Nat. Photonics 12, 291–296 (2018).

    Article  ADS  Google Scholar 

  16. Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    Article  ADS  Google Scholar 

  17. Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    Article  ADS  Google Scholar 

  18. Mashiko, H., Oguri, K., Yamaguchi, T., Suda, A. & Gotoh, H. Petahertz optical drive with wide-bandgap semiconductor. Nat. Phys. 12, 741–745 (2016).

    Article  Google Scholar 

  19. Sommer, A. et al. Attosecond nonlinear polarization and light-matter energy transfer in solids. Nature 534, 86–90 (2016).

    Article  ADS  Google Scholar 

  20. Garg, M. et al. Multi-petahertz electronic metrology. Nature 538, 359–363 (2016).

    Article  ADS  Google Scholar 

  21. Higuchi, T., Heide, C., Ullmann, K., Weber, H. B. & Hommelhoff, P. Light-field-driven currents in graphene. Nature 550, 224–228 (2017).

    Article  ADS  Google Scholar 

  22. Chen, L., Zhang, Y., Chen, G. & Franco, I. Stark control of electrons along nanojunctions. Nat. Commun. 9, 2070 (2018).

    Article  ADS  Google Scholar 

  23. Ossiander, M. et al. The speed limit of optoelectronics. Nat. Commun. 13, 1620 (2022).

    Article  ADS  Google Scholar 

  24. Gaynor, J. D. et al. Solid state core-exciton dynamics in NaCl observed by tabletop attosecond four-wave mixing spectroscopy. Phys. Rev. B 103, 245140 (2021).

    Article  ADS  Google Scholar 

  25. Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  ADS  Google Scholar 

  26. Goulielmakis, E. & Brabec, T. High harmonic generation in condensed matter. Nat. Photonics 16, 411–421 (2022).

    Article  ADS  Google Scholar 

  27. Di Palo, N. et al. Attosecond absorption and reflection spectroscopy of solids. APL Photonics 9, 020901 (2024).

    Article  Google Scholar 

  28. Ghimire, S. et al. Strong-field and attosecond physics in solids. J. Phys. B At. Mol. Opt. Phys. 47, 204030 (2014).

    Article  ADS  Google Scholar 

  29. Li, J. et al. Attosecond science based on high harmonic generation from gases and solids. Nat. Commun. 11, 2748 (2020).

    Article  ADS  Google Scholar 

  30. Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    Article  ADS  Google Scholar 

  31. Vampa, G. et al. Theoretical analysis of high-harmonic generation in solids. Phys. Rev. Lett. 113, 073901 (2014).

    Article  ADS  Google Scholar 

  32. Jürgens, P. et al. Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

    Article  Google Scholar 

  33. Brunel, F. Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the high-intensity limit. J. Opt. Soc. Am. B 7, 521–526 (1990).

    Article  ADS  Google Scholar 

  34. Li, L. et al. Reciprocal-space-trajectory perspective on high-harmonic generation in solids. Phys. Rev. Lett. 122, 193901 (2019).

    Article  ADS  Google Scholar 

  35. Pellegrini, C., Marinelli, A. & Reiche, S. The physics of X-ray free-electron lasers. Rev. Mod. Phys. 88, 015006 (2016).

    Article  ADS  Google Scholar 

  36. Maroju, P. K. et al. Attosecond pulse shaping using a seeded free-electron laser. Nature 578, 386–391 (2020).

    Article  ADS  Google Scholar 

  37. Duris, J. et al. Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser. Nat. Photonics 14, 30–36 (2020).

    Article  MathSciNet  Google Scholar 

  38. Malyzhenkov, A. et al. Single- and two-color attosecond hard X-ray free-electron laser pulses with nonlinear compression. Phys. Rev. Res. 2, 042018 (2020).

    Article  Google Scholar 

  39. Guo, Z. et al. Experimental demonstration of attosecond pump-probe spectroscopy with an X-ray free-electron laser. Nat. Photonics 18, 691–697 (2024).

    Article  Google Scholar 

  40. Agostini, P. & DiMauro, L. F. The physics of attosecond light pulses. Rep. Prog. Phys. 67, 813 (2004).

    Article  ADS  Google Scholar 

  41. Lakhotia, H. et al. Laser picoscopy of valence electrons in solids. Nature 583, 55–59 (2020).

    Article  ADS  Google Scholar 

  42. Vampa, G. et al. All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

    Article  ADS  Google Scholar 

  43. You, Y. S., Cunningham, E., Reis, D. A. & Ghimire, S. Probing periodic potential of crystals via strong-field re-scattering. J. Phys. B At. Mol. Opt. Phys. 51, 114002 (2018).

    Article  ADS  Google Scholar 

  44. Nefedova, V. E. et al. Enhanced extreme ultraviolet high-harmonic generation from chromium-doped magnesium oxide. Appl. Phys. Lett. 118, 201103 (2021).

    Article  ADS  Google Scholar 

  45. Mrudul, M. S., Tancogne-Dejean, N., Rubio, A. & Dixit, G. High-harmonic generation from spin-polarised defects in solids. npj Comput. Mater. 6, 1–9 (2020).

    Article  ADS  Google Scholar 

  46. Uzan, A. J. et al. Attosecond spectral singularities in solid-state high-harmonic generation. Nat. Photonics 14, 183–187 (2020).

    Article  ADS  Google Scholar 

  47. Baykusheva, D. et al. All-optical probe of three-dimensional topological insulators based on high-harmonic generation by circularly polarized laser fields. Nano Lett. 21, 8970–8978 (2021).

    Article  ADS  Google Scholar 

  48. Bai, Y. et al. High-harmonic generation from topological surface states. Nat. Phys. 17, 311–315 (2021).

    Article  Google Scholar 

  49. Heide, C. et al. Probing topological phase transitions using high-harmonic generation. Nat. Photonics 16, 620–624 (2022).

    Article  ADS  Google Scholar 

  50. Zürch, M. et al. Direct and simultaneous observation of ultrafast electron and hole dynamics in germanium. Nat. Commun. 8, 15734 (2017).

    Article  ADS  Google Scholar 

  51. Jiang, C.-M. et al. Characterization of photo-induced charge transfer and hot carrier relaxation pathways in spinel cobalt oxide (Co3O4). J. Phys. Chem. C 118, 22774–22784 (2014).

    Article  Google Scholar 

  52. Vura-Weis, J. et al. Femtosecond M2,3-edge spectroscopy of transition-metal oxides: photoinduced oxidation state change in α-Fe2O3. J. Phys. Chem. Lett. 4, 3667–3671 (2013).

    Article  Google Scholar 

  53. Chang, H.-T. et al. Coupled valence carrier and core-exciton dynamics in WS2 probed by few-femtosecond extreme ultraviolet transient absorption spectroscopy. Phys. Rev. B 104, 064309 (2021).

    Article  ADS  Google Scholar 

  54. Garratt, D. et al. Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nat. Commun. 13, 3414 (2022).

    Article  ADS  Google Scholar 

  55. Géneaux, R. et al. Attosecond time-domain measurement of core-level-exciton decay in magnesium oxide. Phys. Rev. Lett. 124, 207401 (2020).

    Article  ADS  Google Scholar 

  56. Neufeld, O., Zhang, J., De Giovannini, U., Hübener, H. & Rubio, A. Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy. Proc. Natl Acad. Sci. USA 119, e2204219119 (2022).

    Article  Google Scholar 

  57. Jager, M. F. et al. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy. Proc. Natl Acad. Sci. USA 114, 9558–9563 (2017).

    Article  ADS  Google Scholar 

  58. Bionta, M. R. et al. Tracking ultrafast solid-state dynamics using high harmonic spectroscopy. Phys. Rev. Res. 3, 023250 (2021).

    Article  Google Scholar 

  59. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    Article  ADS  Google Scholar 

  60. Géneaux, R., Chang, H.-T., Schwartzberg, A. M. & Marroux, H. J. B. Source noise suppression in attosecond transient absorption spectroscopy by edge-pixel referencing. Opt. Express 29, 951–960 (2021).

    Article  ADS  Google Scholar 

  61. Golde, D., Kira, M., Meier, T. & Koch, S. W. Microscopic theory of the extremely nonlinear terahertz response of semiconductors. Phys. Status Solidi B 248, 863–866 (2011).

    Article  ADS  Google Scholar 

  62. Picón, A., Plaja, L. & Biegert, J. Attosecond X-ray transient absorption in condensed-matter: a core-state-resolved Bloch model. New J. Phys. 21, 043029 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  63. Cistaro, G. et al. Theoretical approach for electron dynamics and ultrafast spectroscopy (EDUS). J. Chem. Theory Comput. 19, 333–348 (2023).

    Article  Google Scholar 

  64. Yu, C., Hansen, K. K. & Madsen, L. B. Enhanced high-order harmonic generation in donor-doped band-gap materials. Phys. Rev. A 99, 013435 (2019).

    Article  ADS  Google Scholar 

  65. Pemmaraju, C. D. Simulation of attosecond transient soft X-ray absorption in solids using generalized Kohn-Sham real-time time-dependent density functional theory. New J. Phys. 22, 083063 (2020).

    Article  ADS  Google Scholar 

  66. Wu, M., Ghimire, S., Reis, D. A., Schafer, K. J. & Gaarde, M. B. High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015).

    Article  ADS  Google Scholar 

  67. Jürß, H. & Bauer, D. High-harmonic generation in Su-Schrieffer-Heeger chains. Phys. Rev. B 99, 195428 (2019).

    Article  ADS  Google Scholar 

  68. Yu, C., Iravani, H. & Madsen, L. B. Crystal-momentum-resolved contributions to multiple plateaus of high-order harmonic generation from band-gap materials. Phys. Rev. A 102, 033105 (2020).

    Article  ADS  Google Scholar 

  69. Li, L., Lan, P., Zhu, X. & Lu, P. High harmonic generation in solids: particle and wave perspectives. Rep. Prog. Phys. 86, 116401 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  70. Vampa, G., McDonald, C. R., Orlando, G., Corkum, P. B. & Brabec, T. Semiclassical analysis of high harmonic generation in bulk crystals. Phys. Rev. B 91, 064302 (2015).

    Article  ADS  Google Scholar 

  71. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  72. Silva, R. E. F., Martín, F. & Ivanov, M. High harmonic generation in crystals using maximally localized Wannier functions. Phys. Rev. B 100, 195201 (2019).

    Article  ADS  Google Scholar 

  73. Yue, L. & Gaarde, M. B. Structure gauges and laser gauges for the semiconductor Bloch equations in high-order harmonic generation in solids. Phys. Rev. A 101, 053411 (2020).

    Article  ADS  Google Scholar 

  74. Yue, L. & Gaarde, M. B. Introduction to theory of high-harmonic generation in solids: tutorial. J. Opt. Soc. Am. B 39, 535 (2022).

    Article  ADS  Google Scholar 

  75. Houston, W. V. Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940).

    Article  ADS  MathSciNet  Google Scholar 

  76. Krieger, J. B. & Iafrate, G. J. Time evolution of Bloch electrons in a homogeneous electric field. Phys. Rev. B 33, 5494–5500 (1986).

    Article  ADS  Google Scholar 

  77. Yue, L. & Gaarde, M. B. Imperfect recollisions in high-harmonic generation in solids. Phys. Rev. Lett. 124, 153204 (2020).

    Article  ADS  Google Scholar 

  78. Wannier, G. H. The structure of electronic excitation levels in insulating crystals. Phys. Rev. 52, 191–197 (1937).

    Article  ADS  Google Scholar 

  79. Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I. & Vanderbilt, D. Maximally localized Wannier functions: theory and applications. Rev. Mod. Phys. 84, 1419–1475 (2012).

    Article  ADS  Google Scholar 

  80. Parks, A. M. et al. Wannier quasi-classical approach to high harmonic generation in semiconductors. Optica 7, 1764 (2020).

    Article  ADS  Google Scholar 

  81. Osika, E. N. et al. Wannier-Bloch approach to localization in high-harmonics generation in solids. Phys. Rev. X 7, 021017 (2017).

    Google Scholar 

  82. Brown, G. G., Jiménez-Galán, A., Silva, R. E. F. & Ivanov, M, Real-space perspective on dephasing in solid-state high harmonic generation. Phys. Rev. Res. 6, 043005 (2024).

    Article  Google Scholar 

  83. Vampa, G. et al. Linking high harmonics from gases and solids. Nature 522, 462–464 (2015).

    Article  ADS  Google Scholar 

  84. Hohenleutner, M. et al. Real-time observation of interfering crystal electrons in high-harmonic generation. Nature 523, 572–575 (2015).

    Article  ADS  Google Scholar 

  85. Huttner, U., Schuh, K., Moloney, J. V. & Koch, S. W. Similarities and differences between high-harmonic generation in atoms and solids. J. Opt. Soc. Am. B 33, C22 (2016).

    Article  Google Scholar 

  86. Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nat. Photonics 8, 119–123 (2014).

    Article  ADS  Google Scholar 

  87. Higuchi, T., Stockman, M. I. & Hommelhoff, P. Strong-field perspective on high-harmonic radiation from bulk solids. Phys. Rev. Lett. 113, 213901 (2014).

    Article  ADS  Google Scholar 

  88. McDonald, C. R., Vampa, G., Corkum, P. B. & Brabec, T. Interband Bloch oscillation mechanism for high-harmonic generation in semiconductor crystals. Phys. Rev. A 92, 033845 (2015).

    Article  ADS  Google Scholar 

  89. Thorpe, A., Boroumand, N., Parks, A. M., Goulielmakis, E. & Brabec, T. High harmonic generation in solids: real versus virtual transition channels. Phys. Rev. B 107, 075135 (2023).

    Article  ADS  Google Scholar 

  90. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).

    Article  ADS  Google Scholar 

  91. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    Article  ADS  Google Scholar 

  92. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    Article  ADS  Google Scholar 

  93. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Article  Google Scholar 

  94. Mashiko, H. et al. Multi-petahertz electron interference in Cr:Al2O3 solid-state material. Nat. Commun. 9, 1468 (2018).

    Article  ADS  Google Scholar 

  95. Buades, B. et al. Attosecond state-resolved carrier motion in quantum materials probed by soft X-ray XANES. Appl. Phys. Rev. 8, 011408 (2021).

    Article  ADS  Google Scholar 

  96. Volkov, M. et al. Floquet-Bloch resonances in near-petahertz electroabsorption spectroscopy of SiO2. Phys. Rev. B 107, 184304 (2023).

    Article  ADS  Google Scholar 

  97. Inzani, G. et al. Field-driven attosecond charge dynamics in germanium. Nat. Photonics 17, 1059–1065 (2023).

    Article  ADS  Google Scholar 

  98. Lucchini, M. et al. Unravelling the intertwined atomic and bulk nature of localised excitons by attosecond spectroscopy. Nat. Commun. 12, 1021 (2021).

    Article  ADS  Google Scholar 

  99. Kobayashi, Y. et al. Floquet engineering of strongly driven excitons in monolayer tungsten disulfide. Nat. Phys. 19, 171–176 (2023).

  100. Jensen, S. V. B., Madsen, L. B., Rubio, A. & Tancogne-Dejean, N. High-harmonic spectroscopy of strongly bound excitons in solids. Phys. Rev. A 109, 063104 (2024).

    Article  ADS  Google Scholar 

  101. Portella, M. T., Bigot, J.-Y., Schoenlein, R. W., Cunningham, J. E. & Shank, C. V. k-space carrier dynamics in GaAs. Appl. Phys. Lett. 60, 2123–2125 (1992).

    Article  ADS  Google Scholar 

  102. Waldermann, F. C. et al. Measuring phonon dephasing with ultrafast pulses using Raman spectral interference. Phys. Rev. B 78, 155201 (2008).

    Article  ADS  Google Scholar 

  103. Orlando, G., Ho, T.-S. & Chu, S.-I. Macroscopic effects on high-order harmonic generation in disordered semiconductors. J. Opt. Soc. Am. B 36, 1873 (2019).

    Article  ADS  Google Scholar 

  104. Luu, T. T. & Wörner, H. J. High-order harmonic generation in solids: a unifying approach. Phys. Rev. B 94, 115164 (2016).

    Article  ADS  Google Scholar 

  105. Brown, G. G., Jiménez-Galán, A., Silva, R. E. F. & Ivanov, M. Ultrafast dephasing in solid-state high-harmonic generation: macroscopic origin revealed by real-space dynamics. J. Opt. Soc. Am. B 41, B40–B46 (2024).

    Article  Google Scholar 

  106. Abadie, C. Q., Wu, M. & Gaarde, M. B. Spatiotemporal filtering of high harmonics in solids. Opt. Lett. 43, 5339 (2018).

    Article  ADS  Google Scholar 

  107. Floss, I. et al. Ab initio multiscale simulation of high-order harmonic generation in solids. Phys. Rev. A 97, 011401 (2018).

    Article  ADS  Google Scholar 

  108. Navarrete, F., Ciappina, M. F. & Thumm, U. Crystal-momentum-resolved contributions to high-order harmonic generation in solids. Phys. Rev. A 100, 033405 (2019).

    Article  ADS  Google Scholar 

  109. Vampa, G. et al. Attosecond synchronization of extreme ultraviolet high harmonics from crystals. J. Phys. B At. Mol. Opt. Phys. 53, 144003 (2020).

    Article  ADS  Google Scholar 

  110. Jeong, T.-I. et al. Deterministic nanoantenna array design for stable plasmon-enhanced harmonic generation. Nanophotonics 12, 619–629 (2023).

    Article  Google Scholar 

  111. Butet, J., Brevet, P.-F. & Martin, O. J. F. Optical second harmonic generation in plasmonic nanostructures: from fundamental principles to advanced applications. ACS Nano 9, 10545–10562 (2015).

    Article  Google Scholar 

  112. Kim, K.-H., Husakou, A. & Herrmann, J. High-order harmonic generation employing field enhancement by metallic fractal rough surfaces. Opt. Express 19, 20910–20915 (2011).

    Article  ADS  Google Scholar 

  113. Wu, X.-Y., Liang, H., Kong, X.-S., Gong, Q. & Peng, L.-Y. Enhancement of high-order harmonic generation in two-dimensional materials by plasmonic fields. Phys. Rev. A 103, 043117 (2021).

    Article  ADS  Google Scholar 

  114. Vampa, G. et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 13, 659–662 (2017).

    Article  Google Scholar 

  115. Cox, J. D., Marini, A. & de Abajo, F. J. G. Plasmon-assisted high-harmonic generation in graphene. Nat. Commun. 8, 14380 (2017).

    Article  ADS  Google Scholar 

  116. Han, S. et al. High-harmonic generation by field enhanced femtosecond pulses in metal-sapphire nanostructure. Nat. Commun. 7, 13105 (2016).

    Article  ADS  Google Scholar 

  117. Han, S. High-harmonic generation using a single dielectric nanostructure. Photonics 9, 427 (2022).

    Article  Google Scholar 

  118. Liu, H. et al. Enhanced high-harmonic generation from an all-dielectric metasurface. NaPhys. 14, 1006–1010 (2018).

    Google Scholar 

  119. Ciappina, M. F. et al. Attosecond physics at the nanoscale. Rep. Prog. Phys. 80, 054401 (2017).

    Article  ADS  Google Scholar 

  120. Pattanayak, A., S, M. M. & Dixit, G. Influence of vacancy defects in solid high-order harmonic generation. Phys. Rev. A 101, 013404 (2020).

    Article  ADS  Google Scholar 

  121. Iravani, H., Hansen, K. K. & Madsen, L. B. Effects of vacancies on high-order harmonic generation in a linear chain with band gap. Phys. Rev. Res. 2, 013204 (2020).

    Article  Google Scholar 

  122. Queisser, H. J. & Haller, E. E. Defects in semiconductors: some fatal, some vital. Science 281, 945–950 (1998).

    Article  Google Scholar 

  123. Vines, L., Monakhov, E. & Kuznetsov, A. Defects in semiconductors. J. Appl. Phys. 132, 150401 (2022).

    Article  ADS  Google Scholar 

  124. Coutinho, J., Markevich, V. P. & Peaker, A. R. Characterisation of negative-U defects in semiconductors. J. Condens. Matter Phys. 32, 323001 (2020).

    Article  Google Scholar 

  125. Tuomisto, F. (ed.) Characterisation and Control of Defects in Semiconductors (IET, 2019).

  126. Xu, S. et al. The defect-state-assisted enhancement of high harmonic generation in bulk ZnO. Appl. Phys. Lett. 122, 182105 (2023).

    Article  ADS  Google Scholar 

  127. Summers, A. M. et al. Realizing attosecond core-level X-ray spectroscopy for the investigation of condensed matter systems. Ultrafast Sci. 3, 0004 (2023).

    Article  Google Scholar 

  128. Azoury, D. et al. Electronic wavefunctions probed by all-optical attosecond interferometry. Nat. Photonics 13, 54–59 (2019).

    Article  ADS  Google Scholar 

  129. Knowles, K. E., Koch, M. D. & Shelton, J. L. Three applications of ultrafast transient absorption spectroscopy of semiconductor thin films: spectroelectrochemistry, microscopy, and identification of thermal contributions. J. Mater. Chem. C 6, 11853–11867 (2018).

    Article  Google Scholar 

  130. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  Google Scholar 

  131. Zong, A., Nebgen, B. R., Lin, S.-C., Spies, J. A. & Zuerch, M. Emerging ultrafast techniques for studying quantum materials. Nat. Rev. Mater. 8, 224–240 (2023).

    Article  ADS  Google Scholar 

  132. Bowlan, P., Martinez-Moreno, E., Reimann, K., Elsaesser, T. & Woerner, M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B 89, 041408 (2014).

    Article  ADS  Google Scholar 

  133. Yoshikawa, N., Tamaya, T. & Tanaka, K. High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  134. Zhang, Y. et al. Orientation dependence of high-order harmonic generation in graphene. Phys. Rev. A 104, 033110 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  135. Mrudul, M. S. & Dixit, G. High-harmonic generation from monolayer and bilayer graphene. Phys. Rev. B 103, 094308 (2021).

    Article  ADS  Google Scholar 

  136. Feng, Y. et al. Semiclassical analysis of ellipticity dependence of harmonic yield in graphene. Phys. Rev. A 104, 043525 (2021).

    Article  ADS  Google Scholar 

  137. Murakami, Y., Eckstein, M. & Werner, P. High-harmonic generation in Mott insulators. Phys. Rev. Lett. 121, 057405 (2018).

    Article  ADS  Google Scholar 

  138. Silva, R. E. F., Jiménez-Galán, A., Amorim, B., Smirnova, O. & Ivanov, M. Topological strong-field physics on sub-laser-cycle timescale. Nat. Photonics 13, 849–854 (2019).

    Article  ADS  Google Scholar 

  139. Chacón, A. et al. Circular dichroism in higher-order harmonic generation: heralding topological phases and transitions in Chern insulators. Phys. Rev. B 102, 134115 (2020).

    Article  ADS  Google Scholar 

  140. Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator. Nature 593, 385–390 (2021).

    Article  ADS  Google Scholar 

  141. Pattanayak, A., Pujari, S. & Dixit, G. Role of Majorana fermions in high-harmonic generation from Kitaev chain. Sci. Rep. 12, 6722 (2022).

    Article  ADS  Google Scholar 

  142. Baldelli, N., Bhattacharya, U., González-Cuadra, D., Lewenstein, M. & Graß, T. Detecting Majorana zero modes via strong field dynamics. ACS Omega 7, 47424–47430 (2022).

    Article  Google Scholar 

  143. Silva, R. E. F., Blinov, I. V., Rubtsov, A. N., Smirnova, O. & Ivanov, M. High-harmonic spectroscopy of ultrafast many-body dynamics in strongly correlated systems. Nat. Photonics 12, 266–270 (2018).

    Article  ADS  Google Scholar 

  144. Roy, A., Bera, S. & Saha, K. Nonlinear dynamical response of interacting bosons to synthetic electric field. Phys. Rev. Res. 2, 043133 (2020).

    Article  Google Scholar 

  145. Uchida, K. et al. High-order harmonic generation and its unconventional scaling law in the Mott-insulating Ca2RuO4. Phys. Rev. Lett. 128, 127401 (2022).

    Article  ADS  Google Scholar 

  146. Murakami, Y., Uchida, K., Koga, A., Tanaka, K. & Werner, P. Anomalous temperature dependence of high-harmonic generation in Mott insulators. Phys. Rev. Lett. 129, 157401 (2022).

    Article  ADS  Google Scholar 

  147. Alcalà, J. et al. High-harmonic spectroscopy of quantum phase transitions in a high-Tc superconductor. Proc. Natl Acad. Sci. USA 119, e2207766119 (2022).

    Article  Google Scholar 

  148. Cistaro, G., Plaja, L., Martín, F. & Picón, A. Attosecond X-ray transient absorption spectroscopy in graphene. Phys. Rev. Res. 3, 013144 (2021).

    Article  Google Scholar 

  149. Shao, Z., Cao, X., Luo, H. & Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 10, 581–605 (2018).

    Article  Google Scholar 

  150. Sala, S., Förster, J. & Saenz, A. Ultracold-atom quantum simulator for attosecond science. Phys. Rev. A 95, 011403 (2017).

    Article  ADS  Google Scholar 

  151. Senaratne, R. et al. Quantum simulation of ultrafast dynamics using trapped ultracold atoms. Nat. Commun. 9, 2065 (2018).

    Article  ADS  Google Scholar 

  152. Argüello-Luengo, J. et al. Analog simulation of high-harmonic generation in atoms. PRX Quantum 5, 010328 (2024).

    Article  ADS  Google Scholar 

  153. Kolesik, M. & Moloney, J. V. Numerical discreteness and dephasing in high-harmonic calculations in solids. Phys. Rev. B 108, 115433 (2023).

    Article  ADS  Google Scholar 

  154. Borsch, M., Meierhofer, M., Huber, R. & Kira, M. Lightwave electronics in condensed matter. Nat. Rev. Mater. 8, 668–687 (2023).

    Article  ADS  Google Scholar 

  155. Emelina, A. S., Emelin, M. Y. & Ryabikin, M. Y. Wavelength scaling laws for high-order harmonic yield from atoms driven by mid- and long-wave infrared laser fields. J. Opt. Soc. Am. B 36, 3236–3245 (2019).

    Article  ADS  Google Scholar 

  156. Wan, Z. et al. Wavelength scaling of high harmonic yields and cutoff energies in solids driven by mid-infrared pulses. Opt. Express 31, 30294–30304 (2023).

    Article  ADS  Google Scholar 

  157. Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66–70 (2016).

    Article  ADS  Google Scholar 

  158. Chini, M., Zhao, K. & Chang, Z. The generation, characterization and applications of broadband isolated attosecond pulses. Nat. Photonics 8, 178–186 (2014).

    Article  ADS  Google Scholar 

  159. Li, B. et al. Resonance-enhanced solid high-order harmonic generation by a chirped laser pulse. Opt. Commun. 511, 128020 (2022).

    Article  Google Scholar 

  160. Zhong, S. et al. High harmonic generation and application for photoemission spectroscopy in condensed matter. Mater. Futures 1, 032201 (2022).

    Article  ADS  Google Scholar 

  161. Weissenbilder, R. et al. How to optimize high-order harmonic generation in gases. Nat. Rev. Phys. 4, 713–722 (2022).

    Article  Google Scholar 

  162. Klas, R. et al. Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source. PhotoniX 2, 4 (2021).

    Article  Google Scholar 

  163. Comby, A. et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source. Opt. Express 27, 20383–20396 (2019).

    Article  ADS  Google Scholar 

  164. Park, J., Subramani, A., Kim, S. & Ciappina, M. F. Recent trends in high-order harmonic generation in solids. Adv. Phys. X 7, 2003244 (2022).

    Google Scholar 

  165. Lu, J., Cunningham, E. F., You, Y. S., Reis, D. A. & Ghimire, S. Interferometry of dipole phase in high harmonics from solids. Nat. Photonics 13, 96–100 (2019).

    Article  ADS  Google Scholar 

  166. Yang, Y. et al. High-harmonic generation from an epsilon-near-zero material. Nat. Phys. 15, 1022–1026 (2019).

    Article  Google Scholar 

  167. Yang, H. et al. High-harmonic generation in polycrystalline CdTe nano-films via macroscopic investigations. Opt. Express 30, 47733–47743 (2022).

    Article  ADS  Google Scholar 

  168. Kaplan, C. J. et al. Femtosecond tracking of carrier relaxation in germanium with extreme ultraviolet transient reflectivity. Phys. Rev. B 97, 205202 (2018).

    Article  ADS  Google Scholar 

  169. Xia, P. et al. Nonlinear propagation effects in high harmonic generation in reflection and transmission from gallium arsenide. Opt. Express 26, 29393–29400 (2018).

    Article  ADS  Google Scholar 

  170. Leshchenko, V. et al. Kramers-Kronig relation in attosecond transient absorption spectroscopy. Optica 10, 142–146 (2023).

    Article  ADS  Google Scholar 

  171. Brahms, C., Belli, F. & Travers, J. C. Resonant dispersive wave emission in hollow capillary fibers filled with pressure gradients. Opt. Lett. 45, 4456–4459 (2020).

    Article  ADS  Google Scholar 

  172. Catoire, F. et al. Complex structure of spatially resolved high-order-harmonic spectra. Phys. Rev. A 94, 063401 (2016).

    Article  ADS  Google Scholar 

  173. Ghimire, S. & Reis, D. A. High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

    Article  Google Scholar 

  174. Higley, D. J. et al. Femtosecond X-ray induced changes of the electronic and magnetic response of solids from electron redistribution. Nat. Commun. 10, 1–9 (2019).

    Article  Google Scholar 

  175. Kohrell, F. et al. A solid-state high harmonic generation spectrometer with cryogenic cooling. Rev. Sci. Instrum. 95, 023906 (2024).

    Article  ADS  Google Scholar 

  176. Han, Y.-C. & Madsen, L. B. Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation. Phys. Rev. A 81, 063430 (2010).

    Article  ADS  Google Scholar 

  177. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  ADS  Google Scholar 

  178. Sundaram, B. & Milonni, P. W. High-order harmonic generation: simplified model and relevance of single-atom theories to experiment. Phys. Rev. A 41, 6571–6573 (1990).

    Article  ADS  Google Scholar 

  179. Wu, M., Chen, S., Camp, S., Schafer, K. J. & Gaarde, M. B. Theory of strong-field attosecond transient absorption. J. Phys. B At. Mol. Opt. Phys. 49, 062003 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to C.F.d.M. Faria and the organizers of the Quantum Battles in Attoscience 2023 (particularly to K. Hamilton and L. Rodríguez) at the University College of London for bringing them together and providing the opportunity to present their perspectives on the attoscience of solids. S.M.C. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant TReSFiDS No. 886092. K.M.K. acknowledges PhD funding from the Royal Society URF/R1/191759. F.O.N. gratefully acknowledges funding by the German Research Foundation, SFB 1477 ‘Light-Matter Interactions at Interfaces’, project number 441234705. J.R.-D. acknowledges support from the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya, the European Social Fund (L’FSE inverteix en el teu futur)–FEDER, the Government of Spain (Severo Ochoa CEX2019-000910-S and TRANQI), Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya (CERCA programme) and the ERC AdG CERQUTE.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefano M. Cavaletto, Katarzyna M. Kowalczyk, Francisco O. Navarrete or Javier Rivera-Dean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Thomas Fennel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaletto, S.M., Kowalczyk, K.M., Navarrete, F.O. et al. The attoscience of strong-field-driven solids. Nat Rev Phys 7, 38–49 (2025). https://doi.org/10.1038/s42254-024-00784-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-024-00784-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing