Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exciton condensate in van der Waals layered materials

Abstract

Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Exciton condensate in double-bilayer graphene.
Fig. 2: Exciton condensation in the absence of magnetic field.
Fig. 3: Excitonic insulators in MoSe2–h-BN–WSe2 heterostructures.
Fig. 4: Exciton condensation using moiré superlattices.

Similar content being viewed by others

References

  1. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  2. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    Article  ADS  Google Scholar 

  3. Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002).

    Article  ADS  Google Scholar 

  4. Timofeev, V. B. & Gorbunov, A. V. Collective state of the Bose gas of interacting dipolar excitons. J. Appl. Phys. 101, 081708 (2007).

    Article  ADS  Google Scholar 

  5. Kellogg, M., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys. Rev. Lett. 88, 126804 (2002).

    Article  ADS  Google Scholar 

  6. Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

    Article  ADS  Google Scholar 

  7. Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

    Article  ADS  Google Scholar 

  8. Spielman, I. B., Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Onset of interlayer phase coherence in a bilayer two-dimensional electron system: effect of layer density imbalance. Phys. Rev. B 70, 081303 (2004).

    Article  ADS  Google Scholar 

  9. Tutuc, E. & Shayegan, M. Interaction and disorder in bilayer counterflow transport at filling-factor one. Phys. Rev. B 72, 081307 (2005).

    Article  ADS  Google Scholar 

  10. Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett. 84, 5808–5811 (2000).

    Article  ADS  Google Scholar 

  11. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  12. Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photon. 10, 202–204 (2016).

    Article  ADS  Google Scholar 

  13. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 1–17 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  14. Zhang, Y. et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019).

    Article  Google Scholar 

  15. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 1–15 (2017).

    Article  Google Scholar 

  16. Lee, G.-H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).

    Article  ADS  Google Scholar 

  17. Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).

    Article  ADS  Google Scholar 

  18. Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

    Article  ADS  Google Scholar 

  19. McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).

    Article  ADS  Google Scholar 

  20. Kharitonov, M. Y. & Efetov, K. B. Electron screening and excitonic condensation in double-layer graphene systems. Phys. Rev. B 78, 241401 (2008).

    Article  ADS  Google Scholar 

  21. Burg, G. W. et al. Coherent interlayer tunneling and negative differential resistance with high current density in double bilayer graphene–WSe2 heterostructures. Nano Lett. 17, 3919–3925 (2017).

    Article  ADS  Google Scholar 

  22. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    Article  Google Scholar 

  23. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    Article  Google Scholar 

  24. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    Article  ADS  Google Scholar 

  25. Conti, S., Neilson, D., Peeters, F. M. & Perali, A. Transition metal dichalcogenides as strategy for high temperature electron–hole superfluidity. Condens. Matter 5, 22 (2020).

    Article  Google Scholar 

  26. Debnath, B., Barlas, Y., Wickramaratne, D., Neupane, M. R. & Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: strong coupling regime. Phys. Rev. B 96, 174504 (2017).

    Article  ADS  Google Scholar 

  27. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  28. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  Google Scholar 

  29. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  30. Moskalenko, S. A. & Snoke, D. W. Bose-Einstein Condensation of Excitons and Biexcitons: and Coherent Nonlinear Optics with Excitons (Cambridge Univ. Press, 2000).

  31. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    Article  ADS  Google Scholar 

  32. Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    Article  ADS  Google Scholar 

  33. Phan, V.-N., Becker, K. W. & Fehske, H. Spectral signatures of the BCS-BEC crossover in the excitonic insulator phase of the extended Falicov–Kimball model. Phys. Rev. B 81, 205117 (2010).

    Article  ADS  Google Scholar 

  34. Keldysh, L. & Kozlov, A. Collective properties of excitons in semiconductors. J. Exp. Theor. Phys. 27, 521–528 (1968).

    ADS  Google Scholar 

  35. Comte, C. & Nozières, P. Exciton Bose condensation: the ground state of an electron–hole gas — I. Mean field description of a simplified model. J. Phys. 43, 1069–1081 (1982).

    Article  Google Scholar 

  36. Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).

    Article  ADS  Google Scholar 

  37. Keldysh, L. & Kopaev, Y. V. in Selected Papers of Leonid V Keldysh 41–46 (World Scientific, 2024).

  38. Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. J. Exp. Theor. Phys. 44, 389 (1976).

    ADS  Google Scholar 

  39. Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577 (2004).

    Article  ADS  Google Scholar 

  40. Lozovik, Y. E. & Poushnov, A. V. Magnetism and Josephson effect in a coupled quantum well electron–hole system. Phys. Lett. A 228, 399–407 (1997).

    Article  ADS  Google Scholar 

  41. Fogler, M. M. & Wilczek, F. Josephson effect without superconductivity: realization in quantum Hall bilayers. Phys. Rev. Lett. 86, 1833–1836 (2001).

    Article  ADS  Google Scholar 

  42. Joglekar, Y. N. & MacDonald, A. H. Is there a dc Josephson effect in bilayer quantum Hall systems? Phys. Rev. Lett. 87, 196802 (2001).

    Article  ADS  Google Scholar 

  43. Wen, X. G. & Zee, A. Tunneling in double-layered quantum Hall systems. Phys. Rev. B 47, 2265–2270 (1993).

    Article  ADS  Google Scholar 

  44. Ezawa, Z. F. & Iwazaki, A. Quantum Hall liquid, Josephson effect, and hierarchy in a double-layer electron system. Phys. Rev. B 47, 7295–7311 (1993).

    Article  ADS  Google Scholar 

  45. Stern, A., Girvin, S. M., MacDonald, A. H. & Ma, N. Theory of interlayer tunneling in bilayer quantum Hall ferromagnets. Phys. Rev. Lett. 86, 1829–1832 (2001).

    Article  ADS  Google Scholar 

  46. Balents, L. & Radzihovsky, L. Interlayer tunneling in double-layer quantum Hall pseudoferromagnets. Phys. Rev. Lett. 86, 1825–1828 (2001).

    Article  ADS  Google Scholar 

  47. Wen, X. G. & Zee, A. Superfluidity and superconductivity in double-layered quantum Hall state. Int. J. Mod. Phys. B 17, 4435–4446 (2003).

    Article  ADS  Google Scholar 

  48. Finck, A. D. K., Champagne, A. R., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 075302 (2008).

    Article  ADS  Google Scholar 

  49. Huang, X., Dietsche, W., Hauser, M. & von Klitzing, K. Coupling of Josephson currents in quantum Hall bilayers. Phys. Rev. Lett. 109, 156802 (2012).

    Article  ADS  Google Scholar 

  50. Fertig, H. A. Energy spectrum of a layered system in a strong magnetic field. Phys. Rev. B 40, 1087–1095 (1989).

    Article  ADS  Google Scholar 

  51. Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet. Phys. Rev. Lett. 87, 036803 (2001).

    Article  ADS  Google Scholar 

  52. Girvin, S. M. & MacDonald, A. H. in Perspectives in Quantum Hall Effects 161–224 (Wiley, 1996).

  53. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    Article  ADS  Google Scholar 

  54. Qi, R. et al. Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures. Nat. Commun. 14, 8264 (2023).

    Article  ADS  Google Scholar 

  55. Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

    Article  Google Scholar 

  56. Yang, K. et al. Quantum ferromagnetism and phase transitions in double-layer quantum Hall systems. Phys. Rev. Lett. 72, 732–735 (1994).

    Article  ADS  Google Scholar 

  57. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    Article  ADS  Google Scholar 

  58. Wen, X.-G. & Zee, A. Neutral superfluid modes and “magnetic” monopoles in multilayered quantum Hall systems. Phys. Rev. Lett. 69, 1811–1814 (1992).

    Article  ADS  Google Scholar 

  59. Yukalov, V. I. Bose–Einstein condensation and gauge symmetry breaking. Laser Phys. Lett. 4, 632 (2007).

    Article  ADS  Google Scholar 

  60. Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992).

    Article  ADS  Google Scholar 

  61. Suen, Y. W., Engel, L. W., Santos, M. B., Shayegan, M. & Tsui, D. C. Observation of a ν = 1/2 fractional quantum Hall state in a double-layer electron system. Phys. Rev. Lett. 68, 1379–1382 (1992).

    Article  ADS  Google Scholar 

  62. Murphy, S. Q., Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N. & West, K. W. Many-body integer quantum Hall effect: evidence for new phase transitions. Phys. Rev. Lett. 72, 728–731 (1994).

    Article  ADS  Google Scholar 

  63. Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).

    Article  Google Scholar 

  64. Titov, M. et al. Giant magnetodrag in graphene at charge neutrality. Phys. Rev. Lett. 111, 166601 (2013).

    Article  ADS  Google Scholar 

  65. Liu, X. et al. Frictional magneto-Coulomb drag in graphene double-layer heterostructures. Phys. Rev. Lett. 119, 056802 (2017).

    Article  ADS  Google Scholar 

  66. Kim, S. et al. Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011).

    Article  ADS  Google Scholar 

  67. Song, J. C. W. & Levitov, L. S. Hall drag and magnetodrag in graphene. Phys. Rev. Lett. 111, 126601 (2013).

    Article  ADS  Google Scholar 

  68. Song, J. C. W., Abanin, D. A. & Levitov, L. S. Coulomb drag mechanisms in graphene. Nano Lett. 13, 3631–3637 (2013).

    Article  ADS  Google Scholar 

  69. Neilson, D., Perali, A. & Hamilton, A. R. Excitonic superfluidity and screening in electron–hole bilayer systems. Phys. Rev. B 89, 060502 (2014).

    Article  ADS  Google Scholar 

  70. Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron–hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).

    Article  ADS  Google Scholar 

  71. Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216–1219 (1991).

    Article  ADS  Google Scholar 

  72. Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).

    Article  ADS  Google Scholar 

  73. Li, J. I. A. et al. Negative Coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).

    Article  ADS  Google Scholar 

  74. Lee, K. et al. Giant frictional drag in double bilayer graphene heterostructures. Phys. Rev. Lett. 117, 046803 (2016).

    Article  ADS  Google Scholar 

  75. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Article  Google Scholar 

  76. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  77. Kou, A. et al. Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene. Science 345, 55–57 (2014).

    Article  ADS  Google Scholar 

  78. Champagne, A. R., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for a finite-temperature phase transition in a bilayer quantum Hall system. Phys. Rev. Lett. 100, 096801 (2008).

    Article  ADS  Google Scholar 

  79. Sawada, A. et al. Phase transition in the ν = 2 bilayer quantum Hall state. Phys. Rev. Lett. 80, 4534–4537 (1998).

    Article  ADS  Google Scholar 

  80. Tutuc, E., Melinte, S., De Poortere, E. P., Pillarisetty, R. & Shayegan, M. Role of density imbalance in an interacting bilayer hole system. Phys. Rev. Lett. 91, 076802 (2003).

    Article  ADS  Google Scholar 

  81. Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).

    Article  ADS  Google Scholar 

  82. Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).

    Article  ADS  Google Scholar 

  83. Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).

    Article  ADS  Google Scholar 

  84. Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: charged vortices and Kosterlitz–Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).

    Article  ADS  Google Scholar 

  85. López Ríos, P., Perali, A., Needs, R. J. & Neilson, D. Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS–BEC crossover in double electron–hole layers. Phys. Rev. Lett. 120, 177701 (2018).

    Article  ADS  Google Scholar 

  86. Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

    Article  ADS  Google Scholar 

  87. Hu, B. Y.-K. Prospecting for the superfluid transition in electron-hole coupled quantum wells using Coulomb drag. Phys. Rev. Lett. 85, 820–823 (2000).

    Article  ADS  Google Scholar 

  88. Mink, M. P., Stoof, H. T. C., Duine, R. A., Polini, M. & Vignale, G. Probing the topological exciton condensate via Coulomb drag. Phys. Rev. Lett. 108, 186402 (2012).

    Article  ADS  Google Scholar 

  89. Efimkin, D. K. & Lozovik, Y. E. Drag effect and Cooper electron–hole pair fluctuations in a topological insulator film. Phys. Rev. B 88, 235420 (2013).

    Article  ADS  Google Scholar 

  90. Efimkin, D. K. & Lozovik, Y. E. Fluctuational internal Josephson effect in a topological insulator film. Phys. Rev. B 88, 085414 (2013).

    Article  ADS  Google Scholar 

  91. Vignale, G. & MacDonald, A. H. Drag in paired electron–hole layers. Phys. Rev. Lett. 76, 2786–2789 (1996).

    Article  ADS  Google Scholar 

  92. Seamons, J. A., Morath, C. P., Reno, J. L. & Lilly, M. P. Coulomb drag in the exciton regime in electron–hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).

    Article  ADS  Google Scholar 

  93. Gamucci, A. et al. Anomalous low-temperature Coulomb drag in graphene–GaAs heterostructures. Nat. Commun. 5, 5824 (2014).

    Article  ADS  Google Scholar 

  94. Liu, H., MacDonald, A. H. & Efimkin, D. K. Anomalous drag in electron–hole condensates with granulated order. Phys. Rev. Lett. 127, 166801 (2021).

    Article  ADS  Google Scholar 

  95. Efimkin, D. K. & Galitski, V. Anomalous Coulomb drag in electron–hole bilayers due to the formation of excitons. Phys. Rev. Lett. 116, 046801 (2016).

    Article  ADS  Google Scholar 

  96. Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene–WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).

    Article  ADS  Google Scholar 

  97. Kim, K. et al. Band alignment in WSe2–graphene heterostructures. ACS Nano 9, 4527–4532 (2015).

    Article  Google Scholar 

  98. Efimkin, D. K., Burg, G. W., Tutuc, E. & MacDonald, A. H. Tunneling and fluctuating electron–hole Cooper pairs in double bilayer graphene. Phys. Rev. B 101, 035413 (2020).

    Article  ADS  Google Scholar 

  99. Conti, S., Perali, A., Peeters, F. M. & Neilson, D. Multicomponent screening and superfluidity in gapped electron–hole double bilayer graphene with realistic bands. Phys. Rev. B 99, 144517 (2019).

    Article  ADS  Google Scholar 

  100. Conti, S., Van der Donck, M., Perali, A., Peeters, F. M. & Neilson, D. Doping-dependent switch from one- to two-component superfluidity in coupled electron–hole van der Waals heterostructures. Phys. Rev. B 101, 220504 (2020).

    Article  ADS  Google Scholar 

  101. Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

    Article  ADS  Google Scholar 

  102. Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

    Article  Google Scholar 

  103. Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).

    Article  ADS  Google Scholar 

  104. Xie, M. & MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 121, 067702 (2018).

    Article  ADS  Google Scholar 

  105. Zeng, Y. & MacDonald, A. H. Electrically controlled two-dimensional electron–hole fluids. Phys. Rev. B 102, 085154 (2020).

    Article  ADS  Google Scholar 

  106. Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    Article  ADS  Google Scholar 

  107. Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).

    Article  ADS  Google Scholar 

  108. Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).

    Article  ADS  Google Scholar 

  109. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  ADS  Google Scholar 

  110. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  ADS  Google Scholar 

  111. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  ADS  Google Scholar 

  112. Naik, M. H. & Jain, M. Ultra-flatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    Article  ADS  Google Scholar 

  113. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

    Article  ADS  Google Scholar 

  114. Scalapino, D. J., White, S. R. & Zhang, S. C. Superfluid density and the Drude weight of the Hubbard model. Phys. Rev. Lett. 68, 2830–2833 (1992).

    Article  ADS  Google Scholar 

  115. Ying, X. & Law, K. T. Flat band excitons and quantum metric. Preprint at https://doi.org/10.48550/arXiv.2407.00325 (2024).

  116. Törmä, P., Liang, L. & Peotta, S. Quantum metric and effective mass of a two-body bound state in a flat band. Phys. Rev. B 98, 220511 (2018).

    Article  ADS  Google Scholar 

  117. Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii–Kosterlitz–Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).

    Article  ADS  Google Scholar 

  118. Verma, N., Guerci, D. & Queiroz, R. Geometric stiffness in interlayer exciton condensates. Phys. Rev. Lett. 132, 236001 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  119. Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).

    Article  ADS  Google Scholar 

  120. Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    Article  ADS  Google Scholar 

  121. Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).

    Article  Google Scholar 

  122. Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).

    Article  ADS  Google Scholar 

  123. Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    Article  ADS  Google Scholar 

  124. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  Google Scholar 

  125. Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  126. Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).

    Article  ADS  Google Scholar 

  127. Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).

    Article  Google Scholar 

  128. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  ADS  Google Scholar 

  129. Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, K. F. & Law, K. T. Valley-polarized quantum anomalous Hall state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).

    Article  ADS  Google Scholar 

  130. Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    Article  Google Scholar 

  131. Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    Article  Google Scholar 

  132. Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).

    Article  Google Scholar 

  133. Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).

    Article  ADS  Google Scholar 

  134. Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).

    Article  ADS  Google Scholar 

  135. Gao, B. et al. Excitonic Mott insulator in a Bose–Fermi–Hubbard system of moiré WS2/WSe2 heterobilayer. Nat. Commun. 15, 2305 (2024).

    Article  ADS  Google Scholar 

  136. Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).

    Article  ADS  Google Scholar 

  137. Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021).

    Article  ADS  Google Scholar 

  138. Zhao, S., Cheng, Y. & Tao, L. Modulation and optoelectronic applications of van der Waals interlayer excitons. ACS Photonics 11, 2529–2545 (2024).

    Article  Google Scholar 

  139. Zhang, Y. & Shindou, R. Dissipationless spin-charge conversion in excitonic pseudospin superfluid. Phys. Rev. Lett. 128, 066601 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  140. Jiang, Q.-D., Bao, Z., Sun, Q.-F. & Xie, X. C. Theory for electric dipole superconductivity with an application for bilayer excitons. Sci. Rep. 5, 11925 (2015).

    Article  ADS  Google Scholar 

  141. Glazov, M. M. & Suris, R. A. Ultrafast exciton transport in van der Waals heterostructures. Preprint at https://doi.org/10.48550/arXiv.2403.19571 (2024).

  142. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  Google Scholar 

  143. Laikhtman, B. & Solomon, P. M. DC transformer: dream or reality? Solid State Commun. 138, 143–146 (2006).

    Article  ADS  Google Scholar 

  144. Lozovik, Yu. E. & Sokolik, A. A. Electron–hole pair condensation in a graphene bilayer. JETP Lett. 87, 55–59 (2008).

    Article  ADS  Google Scholar 

  145. Zhang, C.-H. & Joglekar, Y. N. Excitonic condensation of massless fermions in graphene bilayers. Phys. Rev. B 77, 233405 (2008).

    Article  ADS  Google Scholar 

  146. Lozovik, Yu. E. & Sokolik, A. A. Multi-band pairing of ultrarelativistic electrons and holes in graphene bilayer. Phys. Lett. A 374, 326–330 (2009).

    Article  ADS  Google Scholar 

  147. Sodemann, I., Pesin, D. A. & MacDonald, A. H. Interaction-enhanced coherence between two-dimensional Dirac layers. Phys. Rev. B 85, 195136 (2012).

    Article  ADS  Google Scholar 

  148. Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).

    Article  ADS  Google Scholar 

  149. Conti, S., Perali, A., Peeters, F. M. & Neilson, D. Multicomponent electron–hole superfluidity and the BCS–BEC crossover in double bilayer graphene. Phys. Rev. Lett. 119, 257002 (2017).

    Article  ADS  Google Scholar 

  150. Højlund, R., Grovn, E., Pakdel, S., Thygesen, K. S. & Nilsson, F. Exciton superfluidity in two-dimensional heterostructures from first principles: importance of material-specific screening. Phys. Rev. B 108, 014506 (2023).

    Article  ADS  Google Scholar 

  151. Bistritzer, R. & MacDonald, A. H. Influence of disorder on electron–hole pair condensation in graphene bilayers. Phys. Rev. Lett. 101, 256406 (2008).

    Article  ADS  Google Scholar 

  152. Abergel, D. S. L., Sensarma, R. & Das Sarma, S. Density fluctuation effects on the exciton condensate in double-layer graphene. Phys. Rev. B 86, 161412 (2012).

    Article  ADS  Google Scholar 

  153. Sreejith, G. J., Sau, J. D. & Das Sarma, S. Eliashberg theory for dynamical screening in bilayer exciton condensation. Phys. Rev. Lett. 133, 056501 (2024).

    Article  MathSciNet  Google Scholar 

  154. Johansen, Ø., Kamra, A., Ulloa, C., Brataas, A. & Duine, R. A. Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019).

    Article  ADS  Google Scholar 

  155. Jin, Y. et al. Coulomb drag transistor using a graphene and MoS2 heterostructure. Commun. Phys. 3, 1–8 (2020).

    Article  Google Scholar 

  156. Kim, Y. et al. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. 110, 096602 (2013).

    Article  ADS  Google Scholar 

  157. Kim, D. et al. Robust interlayer-coherent quantum Hall states in twisted bilayer graphene. Nano Lett. 23, 163–169 (2023).

    Article  ADS  Google Scholar 

  158. Rickhaus, P. et al. Correlated electron–hole state in twisted double-bilayer graphene. Science 373, 1257–1260 (2021).

    Article  ADS  Google Scholar 

  159. Van der Donck, M. et al. Three-dimensional electron–hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).

    Article  Google Scholar 

  160. Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).

    Article  Google Scholar 

  161. Liu, X. et al. Contact resistance and interfacial engineering: advances in high performance 2D-TMD based devices. Prog. Mater. Sci. 148, 101390 (2025).

    Article  Google Scholar 

  162. Pack, J. et al. Charge-transfer contacts for the measurements of correlated states in high mobility WSe2. Nat. Nanotechnol. 19, 948–954 (2024).

    Article  Google Scholar 

  163. Siao, M. D. et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).

    Article  ADS  Google Scholar 

  164. Yamamoto, M., Nakaharai, S., Ueno, K. & Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 16, 2720–2727 (2016).

    Article  ADS  Google Scholar 

  165. Choi, H. et al. Edge contact for carrier injection and transport in MoS2 field-effect transistors. ACS Nano 13, 13169–13175 (2019).

    Article  Google Scholar 

  166. Doan, M.-H., Jin, Y., Chau, T. K., Joo, M.-K. & Lee, Y. H. Room-temperature mesoscopic fluctuations and Coulomb drag in multilayer WSe2. Adv. Mater. 31, 1900154 (2019).

    Article  Google Scholar 

  167. Leonard, J. R. et al. Moiré pattern of interference dislocations in condensate of indirect excitons. Nat. Commun. 12, 1175 (2021).

    Article  ADS  Google Scholar 

  168. Butov, L. V. Condensation of indirect excitons. MRS Bull. 45, 380–386 (2020).

    Article  ADS  Google Scholar 

  169. Cutshall, J. et al. Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure. Sci. Adv. 11, eadr1772 (2025).

    Article  Google Scholar 

  170. Joglekar, Y. N., Balatsky, A. V. & Lilly, M. P. Excitonic condensate and quasiparticle transport in electron–hole bilayer systems. Phys. Rev. B 72, 205313 (2005).

    Article  ADS  Google Scholar 

  171. Pascucci, F., Conti, S., Neilson, D., Tempere, J. & Perali, A. Josephson effect as a signature of electron–hole superfluidity in bilayers of van der Waals heterostructures. Phys. Rev. B 106, L220503 (2022).

    Article  ADS  Google Scholar 

  172. Hsu, Y.-F. & Su, J.-J. Single interface effects dominate in exciton-condensate/normal-barrier/exciton-condensate (EC/N/EC) structures of long-barrier. New J. Phys. 20, 083002 (2018).

    Article  ADS  Google Scholar 

  173. Wang, T., Fan, R., Dai, Z. & Zaletel, M. P. Designing exciton-condensate Josephson junction in quantum Hall heterostructures. Preprint at https://doi.org/10.48550/arXiv.2409.19059 (2024).

  174. Dolcini, F. et al. Blockade and counterflow supercurrent in exciton-condensate Josephson junctions. Phys. Rev. Lett. 104, 027004 (2010).

    Article  ADS  Google Scholar 

  175. Wu, B. & Li, H. Probing the exciton condensate via shot noise spectroscopy in superconducting hybrid structures based on excitonic insulators. Phys. Rev. B 109, 125402 (2024).

    Article  ADS  Google Scholar 

  176. Sun, Z., Kaneko, T., Golež, D. & Millis, A. J. Second-order Josephson effect in excitonic insulators. Phys. Rev. Lett. 127, 127702 (2021).

    Article  ADS  Google Scholar 

  177. Zeng, Y., Crépel, V. & Millis, A. J. Keldysh field theory of dynamical exciton condensation transitions in nonequilibrium electron–hole bilayers. Phys. Rev. Lett. 132, 266001 (2024).

    Article  MathSciNet  Google Scholar 

  178. Sun, Z. et al. Dynamical exciton condensates in biased electron–hole bilayers. Phys. Rev. Lett. 133, 217002 (2024).

    Article  MathSciNet  Google Scholar 

  179. Gupta, S., Kutana, A. & Yakobson, B. I. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat. Commun. 11, 2989 (2020).

    Article  ADS  Google Scholar 

  180. Wang, Y., Dai, Y., Huang, B., Ang, Y. S. & Wei, W. Small exciton effective mass in quintuple-layer Bi2Se2Te: a material platform towards high-temperature excitonic condensate. Phys. Rev. B 110, 054513 (2024).

    Article  Google Scholar 

  181. Hubert, C. et al. Attractive dipolar coupling between stacked exciton fluids. Phys. Rev. X 9, 021026 (2019).

    Google Scholar 

  182. Choksy, D. J. et al. Attractive and repulsive dipolar interaction in bilayers of indirect excitons. Phys. Rev. B 103, 045126 (2021).

    Article  ADS  Google Scholar 

  183. Zimmerman, M., Rapaport, R. & Gazit, S. Collective interlayer pairing and pair superfluidity in vertically stacked layers of dipolar excitons. Proc. Natl Acad. Sci. USA 119, e2205845119 (2022).

    Article  Google Scholar 

  184. Ulman, K. & Quek, S. Y. Organic-2D material heterostructures: a promising platform for exciton condensation and multiplication. Nano Lett. 21, 8888–8894 (2021).

    Article  ADS  Google Scholar 

  185. Guo, H. L., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).

    Article  ADS  Google Scholar 

  186. Seradjeh, B., Moore, J. E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. Phys. Rev. Lett. 103, 066402 (2009).

    Article  ADS  Google Scholar 

  187. Zhang, J. & Rossi, E. Chiral superfluid states in hybrid graphene heterostructures. Phys. Rev. Lett. 111, 086804 (2013).

    Article  ADS  Google Scholar 

  188. Chansky, A. & Efimkin, D. K. Topological hybrid electron–hole Cooper pairing. Phys. Rev. B 108, 075433 (2023).

    Article  ADS  Google Scholar 

  189. Pikulin, D. I. & Hyart, T. Interplay of exciton condensation and the quantum spin Hall effect in InAs/GaSb bilayers. Phys. Rev. Lett. 112, 176403 (2014).

    Article  ADS  Google Scholar 

  190. Sinner, A., Lozovik, Y. E. & Ziegler, K. Electron pairing with gapless excitations in mixed double layers. Phys. Rev. B 104, 245124 (2021).

    Article  ADS  Google Scholar 

  191. Froese, P., Neupert, T. & Wagner, G. Topological excitons in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Res. 7, 023047 (2025).

    Article  Google Scholar 

  192. Xie, H.-Y., Ghaemi, P., Mitrano, M. & Uchoa, B. Theory of topological exciton insulators and condensates in flat Chern bands. Proc. Natl Acad. Sci. USA 121, e2401644121 (2024).

    Article  MathSciNet  Google Scholar 

  193. Zhu, Q., Tu, M. W.-Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).

    Article  ADS  Google Scholar 

  194. Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).

    Article  ADS  Google Scholar 

  195. Joglekar, Y. N., Balatsky, A. V. & Das Sarma, S. Wigner supersolid of excitons in electron–hole bilayers. Phys. Rev. B 74, 233302 (2006).

    Article  ADS  Google Scholar 

  196. Pieri, P., Neilson, D. & Strinati, G. C. Effects of density imbalance on the BCS–BEC crossover in semiconductor electron–hole bilayers. Phys. Rev. B 75, 113301 (2007).

    Article  ADS  Google Scholar 

  197. Saberi-Pouya, S. et al. Experimental conditions for the observation of electron–hole superfluidity in GaAs heterostructures. Phys. Rev. B 101, 140501 (2020).

    Article  ADS  Google Scholar 

  198. Varley, J. R. & Lee, D. K. K. Structure of exciton condensates in imbalanced electron–hole bilayers. Phys. Rev. B 94, 174519 (2016).

    Article  ADS  Google Scholar 

  199. Seradjeh, B. Topological exciton condensate of imbalanced electrons and holes. Phys. Rev. B 85, 235146 (2012).

    Article  ADS  Google Scholar 

  200. Efimkin, D. K. & Lozovik, Yu. E. Electron–hole pairing with nonzero momentum in a graphene bilayer. J. Exp. Theor. Phys. 113, 880–886 (2011).

    Article  ADS  Google Scholar 

  201. Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron–hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).

    Article  ADS  Google Scholar 

  202. Zhu, J.-X. & Bishop, A. R. Exciton condensate modulation in electron–hole bilayers: a real-space visualization. Phys. Rev. B 81, 115329 (2010).

    Article  ADS  Google Scholar 

  203. Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).

    Article  ADS  Google Scholar 

  204. Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants, funded by the Korean Government (MSIT) (NRF-RS202400450540), the Institute for Basic Science (IBS-R036-D1), and the Hubei University of Technology, China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and writing and editing of the manuscript. B.H.M. and A.M. also researched data for the article.

Corresponding authors

Correspondence to Byoung Hee Moon, Dmitry K. Efimkin or Young Hee Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, B.H., Mondal, A., Efimkin, D.K. et al. Exciton condensate in van der Waals layered materials. Nat Rev Phys 7, 388–401 (2025). https://doi.org/10.1038/s42254-025-00834-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00834-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing