Abstract
Van der Waals layered materials have emerged as a platform for exploring exciton condensation, a phenomenon that reflects quantum coherence and collective behaviour. Unlike traditional quantum Hall systems, 2D layered materials offer a unique opportunity to observe exciton condensation without external magnetic field and at relatively high temperatures, making them highly attractive for both fundamental studies and potential applications. This Perspective focuses on recent advances in understanding the electrical transport behaviours of exciton condensates in 2D layered materials and the strategies proposed to achieve high-temperature exciton condensation, while addressing the challenges and discussing potential future developments in this area.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).
Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).
Snoke, D., Denev, S., Liu, Y., Pfeiffer, L. & West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754–757 (2002).
Timofeev, V. B. & Gorbunov, A. V. Collective state of the Bose gas of interacting dipolar excitons. J. Appl. Phys. 101, 081708 (2007).
Kellogg, M., Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of quantized Hall drag in a strongly correlated bilayer electron system. Phys. Rev. Lett. 88, 126804 (2002).
Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).
Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).
Spielman, I. B., Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Onset of interlayer phase coherence in a bilayer two-dimensional electron system: effect of layer density imbalance. Phys. Rev. B 70, 081303 (2004).
Tutuc, E. & Shayegan, M. Interaction and disorder in bilayer counterflow transport at filling-factor one. Phys. Rev. B 72, 081307 (2005).
Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Resonantly enhanced tunneling in a double layer quantum Hall ferromagnet. Phys. Rev. Lett. 84, 5808–5811 (2000).
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).
Castellanos-Gomez, A. Why all the fuss about 2D semiconductors? Nat. Photon. 10, 202–204 (2016).
Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 1–17 (2016).
Zhang, Y. et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 31, 1901694 (2019).
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 1–15 (2017).
Lee, G.-H. et al. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 99, 243114 (2011).
Min, H., Bistritzer, R., Su, J.-J. & MacDonald, A. H. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 78, 121401 (2008).
Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).
McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013).
Kharitonov, M. Y. & Efetov, K. B. Electron screening and excitonic condensation in double-layer graphene systems. Phys. Rev. B 78, 241401 (2008).
Burg, G. W. et al. Coherent interlayer tunneling and negative differential resistance with high current density in double bilayer graphene–WSe2 heterostructures. Nano Lett. 17, 3919–3925 (2017).
Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).
Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).
Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).
Conti, S., Neilson, D., Peeters, F. M. & Perali, A. Transition metal dichalcogenides as strategy for high temperature electron–hole superfluidity. Condens. Matter 5, 22 (2020).
Debnath, B., Barlas, Y., Wickramaratne, D., Neupane, M. R. & Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: strong coupling regime. Phys. Rev. B 96, 174504 (2017).
Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).
Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
Moskalenko, S. A. & Snoke, D. W. Bose-Einstein Condensation of Excitons and Biexcitons: and Coherent Nonlinear Optics with Excitons (Cambridge Univ. Press, 2000).
Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).
Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal–semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).
Phan, V.-N., Becker, K. W. & Fehske, H. Spectral signatures of the BCS-BEC crossover in the excitonic insulator phase of the extended Falicov–Kimball model. Phys. Rev. B 81, 205117 (2010).
Keldysh, L. & Kozlov, A. Collective properties of excitons in semiconductors. J. Exp. Theor. Phys. 27, 521–528 (1968).
Comte, C. & Nozières, P. Exciton Bose condensation: the ground state of an electron–hole gas — I. Mean field description of a simplified model. J. Phys. 43, 1069–1081 (1982).
Eisenstein, J. P. & MacDonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004).
Keldysh, L. & Kopaev, Y. V. in Selected Papers of Leonid V Keldysh 41–46 (World Scientific, 2024).
Lozovik, Y. E. & Yudson, V. I. A new mechanism for superconductivity: pairing between spatially separated electrons and holes. Sov. J. Exp. Theor. Phys. 44, 389 (1976).
Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577 (2004).
Lozovik, Y. E. & Poushnov, A. V. Magnetism and Josephson effect in a coupled quantum well electron–hole system. Phys. Lett. A 228, 399–407 (1997).
Fogler, M. M. & Wilczek, F. Josephson effect without superconductivity: realization in quantum Hall bilayers. Phys. Rev. Lett. 86, 1833–1836 (2001).
Joglekar, Y. N. & MacDonald, A. H. Is there a dc Josephson effect in bilayer quantum Hall systems? Phys. Rev. Lett. 87, 196802 (2001).
Wen, X. G. & Zee, A. Tunneling in double-layered quantum Hall systems. Phys. Rev. B 47, 2265–2270 (1993).
Ezawa, Z. F. & Iwazaki, A. Quantum Hall liquid, Josephson effect, and hierarchy in a double-layer electron system. Phys. Rev. B 47, 7295–7311 (1993).
Stern, A., Girvin, S. M., MacDonald, A. H. & Ma, N. Theory of interlayer tunneling in bilayer quantum Hall ferromagnets. Phys. Rev. Lett. 86, 1829–1832 (2001).
Balents, L. & Radzihovsky, L. Interlayer tunneling in double-layer quantum Hall pseudoferromagnets. Phys. Rev. Lett. 86, 1825–1828 (2001).
Wen, X. G. & Zee, A. Superfluidity and superconductivity in double-layered quantum Hall state. Int. J. Mod. Phys. B 17, 4435–4446 (2003).
Finck, A. D. K., Champagne, A. R., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 075302 (2008).
Huang, X., Dietsche, W., Hauser, M. & von Klitzing, K. Coupling of Josephson currents in quantum Hall bilayers. Phys. Rev. Lett. 109, 156802 (2012).
Fertig, H. A. Energy spectrum of a layered system in a strong magnetic field. Phys. Rev. B 40, 1087–1095 (1989).
Spielman, I. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Observation of a linearly dispersing collective mode in a quantum Hall ferromagnet. Phys. Rev. Lett. 87, 036803 (2001).
Girvin, S. M. & MacDonald, A. H. in Perspectives in Quantum Hall Effects 161–224 (Wiley, 1996).
Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).
Qi, R. et al. Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures. Nat. Commun. 14, 8264 (2023).
Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).
Yang, K. et al. Quantum ferromagnetism and phase transitions in double-layer quantum Hall systems. Phys. Rev. Lett. 72, 732–735 (1994).
Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).
Wen, X.-G. & Zee, A. Neutral superfluid modes and “magnetic” monopoles in multilayered quantum Hall systems. Phys. Rev. Lett. 69, 1811–1814 (1992).
Yukalov, V. I. Bose–Einstein condensation and gauge symmetry breaking. Laser Phys. Lett. 4, 632 (2007).
Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N., West, K. W. & He, S. New fractional quantum Hall state in double-layer two-dimensional electron systems. Phys. Rev. Lett. 68, 1383–1386 (1992).
Suen, Y. W., Engel, L. W., Santos, M. B., Shayegan, M. & Tsui, D. C. Observation of a ν = 1/2 fractional quantum Hall state in a double-layer electron system. Phys. Rev. Lett. 68, 1379–1382 (1992).
Murphy, S. Q., Eisenstein, J. P., Boebinger, G. S., Pfeiffer, L. N. & West, K. W. Many-body integer quantum Hall effect: evidence for new phase transitions. Phys. Rev. Lett. 72, 728–731 (1994).
Gorbachev, R. V. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 8, 896–901 (2012).
Titov, M. et al. Giant magnetodrag in graphene at charge neutrality. Phys. Rev. Lett. 111, 166601 (2013).
Liu, X. et al. Frictional magneto-Coulomb drag in graphene double-layer heterostructures. Phys. Rev. Lett. 119, 056802 (2017).
Kim, S. et al. Coulomb drag of massless fermions in graphene. Phys. Rev. B 83, 161401 (2011).
Song, J. C. W. & Levitov, L. S. Hall drag and magnetodrag in graphene. Phys. Rev. Lett. 111, 126601 (2013).
Song, J. C. W., Abanin, D. A. & Levitov, L. S. Coulomb drag mechanisms in graphene. Nano Lett. 13, 3631–3637 (2013).
Neilson, D., Perali, A. & Hamilton, A. R. Excitonic superfluidity and screening in electron–hole bilayer systems. Phys. Rev. B 89, 060502 (2014).
Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron–hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).
Gramila, T. J., Eisenstein, J. P., MacDonald, A. H., Pfeiffer, L. N. & West, K. W. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 66, 1216–1219 (1991).
Narozhny, B. N. & Levchenko, A. Coulomb drag. Rev. Mod. Phys. 88, 025003 (2016).
Li, J. I. A. et al. Negative Coulomb drag in double bilayer graphene. Phys. Rev. Lett. 117, 046802 (2016).
Lee, K. et al. Giant frictional drag in double bilayer graphene heterostructures. Phys. Rev. Lett. 117, 046803 (2016).
Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).
McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).
Kou, A. et al. Electron–hole asymmetric integer and fractional quantum Hall effect in bilayer graphene. Science 345, 55–57 (2014).
Champagne, A. R., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for a finite-temperature phase transition in a bilayer quantum Hall system. Phys. Rev. Lett. 100, 096801 (2008).
Sawada, A. et al. Phase transition in the ν = 2 bilayer quantum Hall state. Phys. Rev. Lett. 80, 4534–4537 (1998).
Tutuc, E., Melinte, S., De Poortere, E. P., Pillarisetty, R. & Shayegan, M. Role of density imbalance in an interacting bilayer hole system. Phys. Rev. Lett. 91, 076802 (2003).
Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).
Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).
Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).
Moon, K. et al. Spontaneous interlayer coherence in double-layer quantum Hall systems: charged vortices and Kosterlitz–Thouless phase transitions. Phys. Rev. B 51, 5138–5170 (1995).
López Ríos, P., Perali, A., Needs, R. J. & Neilson, D. Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS–BEC crossover in double electron–hole layers. Phys. Rev. Lett. 120, 177701 (2018).
Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).
Hu, B. Y.-K. Prospecting for the superfluid transition in electron-hole coupled quantum wells using Coulomb drag. Phys. Rev. Lett. 85, 820–823 (2000).
Mink, M. P., Stoof, H. T. C., Duine, R. A., Polini, M. & Vignale, G. Probing the topological exciton condensate via Coulomb drag. Phys. Rev. Lett. 108, 186402 (2012).
Efimkin, D. K. & Lozovik, Y. E. Drag effect and Cooper electron–hole pair fluctuations in a topological insulator film. Phys. Rev. B 88, 235420 (2013).
Efimkin, D. K. & Lozovik, Y. E. Fluctuational internal Josephson effect in a topological insulator film. Phys. Rev. B 88, 085414 (2013).
Vignale, G. & MacDonald, A. H. Drag in paired electron–hole layers. Phys. Rev. Lett. 76, 2786–2789 (1996).
Seamons, J. A., Morath, C. P., Reno, J. L. & Lilly, M. P. Coulomb drag in the exciton regime in electron–hole bilayers. Phys. Rev. Lett. 102, 026804 (2009).
Gamucci, A. et al. Anomalous low-temperature Coulomb drag in graphene–GaAs heterostructures. Nat. Commun. 5, 5824 (2014).
Liu, H., MacDonald, A. H. & Efimkin, D. K. Anomalous drag in electron–hole condensates with granulated order. Phys. Rev. Lett. 127, 166801 (2021).
Efimkin, D. K. & Galitski, V. Anomalous Coulomb drag in electron–hole bilayers due to the formation of excitons. Phys. Rev. Lett. 116, 046801 (2016).
Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene–WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).
Kim, K. et al. Band alignment in WSe2–graphene heterostructures. ACS Nano 9, 4527–4532 (2015).
Efimkin, D. K., Burg, G. W., Tutuc, E. & MacDonald, A. H. Tunneling and fluctuating electron–hole Cooper pairs in double bilayer graphene. Phys. Rev. B 101, 035413 (2020).
Conti, S., Perali, A., Peeters, F. M. & Neilson, D. Multicomponent screening and superfluidity in gapped electron–hole double bilayer graphene with realistic bands. Phys. Rev. B 99, 144517 (2019).
Conti, S., Van der Donck, M., Perali, A., Peeters, F. M. & Neilson, D. Doping-dependent switch from one- to two-component superfluidity in coupled electron–hole van der Waals heterostructures. Phys. Rev. B 101, 220504 (2020).
Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).
Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).
Wu, F.-C., Xue, F. & MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 92, 165121 (2015).
Xie, M. & MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 121, 067702 (2018).
Zeng, Y. & MacDonald, A. H. Electrically controlled two-dimensional electron–hole fluids. Phys. Rev. B 102, 085154 (2020).
Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).
Suárez Morell, E., Correa, J. D., Vargas, P., Pacheco, M. & Barticevic, Z. Flat bands in slightly twisted bilayer graphene: tight-binding calculations. Phys. Rev. B 82, 121407 (2010).
Tarnopolsky, G., Kruchkov, A. J. & Vishwanath, A. Origin of magic angles in twisted bilayer graphene. Phys. Rev. Lett. 122, 106405 (2019).
Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).
Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).
Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. H. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).
Naik, M. H. & Jain, M. Ultra-flatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).
Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).
Scalapino, D. J., White, S. R. & Zhang, S. C. Superfluid density and the Drude weight of the Hubbard model. Phys. Rev. Lett. 68, 2830–2833 (1992).
Ying, X. & Law, K. T. Flat band excitons and quantum metric. Preprint at https://doi.org/10.48550/arXiv.2407.00325 (2024).
Törmä, P., Liang, L. & Peotta, S. Quantum metric and effective mass of a two-body bound state in a flat band. Phys. Rev. B 98, 220511 (2018).
Julku, A., Peltonen, T. J., Liang, L., Heikkilä, T. T. & Törmä, P. Superfluid weight and Berezinskii–Kosterlitz–Thouless transition temperature of twisted bilayer graphene. Phys. Rev. B 101, 060505 (2020).
Verma, N., Guerci, D. & Queiroz, R. Geometric stiffness in interlayer exciton condensates. Phys. Rev. Lett. 132, 236001 (2024).
Tian, H. et al. Evidence for Dirac flat band superconductivity enabled by quantum geometry. Nature 614, 440–444 (2023).
Peotta, S. & Törmä, P. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).
Törmä, P., Peotta, S. & Bernevig, B. A. Superconductivity, superfluidity and quantum geometry in twisted multilayer systems. Nat. Rev. Phys. 4, 528–542 (2022).
Song, Z. et al. All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett. 123, 036401 (2019).
Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).
Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).
Bultinck, N., Chatterjee, S. & Zaletel, M. P. Mechanism for anomalous Hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett. 124, 166601 (2020).
Devakul, T., Crépel, V., Zhang, Y. & Fu, L. Magic in twisted transition metal dichalcogenide bilayers. Nat. Commun. 12, 6730 (2021).
Zhang, Y., Devakul, T. & Fu, L. Spin-textured Chern bands in AB-stacked transition metal dichalcogenide bilayers. Proc. Natl Acad. Sci. USA 118, e2112673118 (2021).
Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).
Xie, Y.-M., Zhang, C.-P., Hu, J.-X., Mak, K. F. & Law, K. T. Valley-polarized quantum anomalous Hall state in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Lett. 128, 026402 (2022).
Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).
Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).
Gu, J. et al. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 18, 395–400 (2022).
Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).
Xiong, R. et al. Correlated insulator of excitons in WSe2/WS2 moiré superlattices. Science 380, 860–864 (2023).
Gao, B. et al. Excitonic Mott insulator in a Bose–Fermi–Hubbard system of moiré WS2/WSe2 heterobilayer. Nat. Commun. 15, 2305 (2024).
Ciarrocchi, A., Tagarelli, F., Avsar, A. & Kis, A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 7, 449–464 (2022).
Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021).
Zhao, S., Cheng, Y. & Tao, L. Modulation and optoelectronic applications of van der Waals interlayer excitons. ACS Photonics 11, 2529–2545 (2024).
Zhang, Y. & Shindou, R. Dissipationless spin-charge conversion in excitonic pseudospin superfluid. Phys. Rev. Lett. 128, 066601 (2022).
Jiang, Q.-D., Bao, Z., Sun, Q.-F. & Xie, X. C. Theory for electric dipole superconductivity with an application for bilayer excitons. Sci. Rep. 5, 11925 (2015).
Glazov, M. M. & Suris, R. A. Ultrafast exciton transport in van der Waals heterostructures. Preprint at https://doi.org/10.48550/arXiv.2403.19571 (2024).
Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).
Laikhtman, B. & Solomon, P. M. DC transformer: dream or reality? Solid State Commun. 138, 143–146 (2006).
Lozovik, Yu. E. & Sokolik, A. A. Electron–hole pair condensation in a graphene bilayer. JETP Lett. 87, 55–59 (2008).
Zhang, C.-H. & Joglekar, Y. N. Excitonic condensation of massless fermions in graphene bilayers. Phys. Rev. B 77, 233405 (2008).
Lozovik, Yu. E. & Sokolik, A. A. Multi-band pairing of ultrarelativistic electrons and holes in graphene bilayer. Phys. Lett. A 374, 326–330 (2009).
Sodemann, I., Pesin, D. A. & MacDonald, A. H. Interaction-enhanced coherence between two-dimensional Dirac layers. Phys. Rev. B 85, 195136 (2012).
Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).
Conti, S., Perali, A., Peeters, F. M. & Neilson, D. Multicomponent electron–hole superfluidity and the BCS–BEC crossover in double bilayer graphene. Phys. Rev. Lett. 119, 257002 (2017).
Højlund, R., Grovn, E., Pakdel, S., Thygesen, K. S. & Nilsson, F. Exciton superfluidity in two-dimensional heterostructures from first principles: importance of material-specific screening. Phys. Rev. B 108, 014506 (2023).
Bistritzer, R. & MacDonald, A. H. Influence of disorder on electron–hole pair condensation in graphene bilayers. Phys. Rev. Lett. 101, 256406 (2008).
Abergel, D. S. L., Sensarma, R. & Das Sarma, S. Density fluctuation effects on the exciton condensate in double-layer graphene. Phys. Rev. B 86, 161412 (2012).
Sreejith, G. J., Sau, J. D. & Das Sarma, S. Eliashberg theory for dynamical screening in bilayer exciton condensation. Phys. Rev. Lett. 133, 056501 (2024).
Johansen, Ø., Kamra, A., Ulloa, C., Brataas, A. & Duine, R. A. Magnon-mediated indirect exciton condensation through antiferromagnetic insulators. Phys. Rev. Lett. 123, 167203 (2019).
Jin, Y. et al. Coulomb drag transistor using a graphene and MoS2 heterostructure. Commun. Phys. 3, 1–8 (2020).
Kim, Y. et al. Breakdown of the interlayer coherence in twisted bilayer graphene. Phys. Rev. Lett. 110, 096602 (2013).
Kim, D. et al. Robust interlayer-coherent quantum Hall states in twisted bilayer graphene. Nano Lett. 23, 163–169 (2023).
Rickhaus, P. et al. Correlated electron–hole state in twisted double-bilayer graphene. Science 373, 1257–1260 (2021).
Van der Donck, M. et al. Three-dimensional electron–hole superfluidity in a superlattice close to room temperature. Phys. Rev. B 102, 060503 (2020).
Wang, Y. & Chhowalla, M. Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys. 4, 101–112 (2022).
Liu, X. et al. Contact resistance and interfacial engineering: advances in high performance 2D-TMD based devices. Prog. Mater. Sci. 148, 101390 (2025).
Pack, J. et al. Charge-transfer contacts for the measurements of correlated states in high mobility WSe2. Nat. Nanotechnol. 19, 948–954 (2024).
Siao, M. D. et al. Two-dimensional electronic transport and surface electron accumulation in MoS2. Nat. Commun. 9, 1442 (2018).
Yamamoto, M., Nakaharai, S., Ueno, K. & Tsukagoshi, K. Self-limiting oxides on WSe2 as controlled surface acceptors and low-resistance hole contacts. Nano Lett. 16, 2720–2727 (2016).
Choi, H. et al. Edge contact for carrier injection and transport in MoS2 field-effect transistors. ACS Nano 13, 13169–13175 (2019).
Doan, M.-H., Jin, Y., Chau, T. K., Joo, M.-K. & Lee, Y. H. Room-temperature mesoscopic fluctuations and Coulomb drag in multilayer WSe2. Adv. Mater. 31, 1900154 (2019).
Leonard, J. R. et al. Moiré pattern of interference dislocations in condensate of indirect excitons. Nat. Commun. 12, 1175 (2021).
Butov, L. V. Condensation of indirect excitons. MRS Bull. 45, 380–386 (2020).
Cutshall, J. et al. Imaging interlayer exciton superfluidity in a 2D semiconductor heterostructure. Sci. Adv. 11, eadr1772 (2025).
Joglekar, Y. N., Balatsky, A. V. & Lilly, M. P. Excitonic condensate and quasiparticle transport in electron–hole bilayer systems. Phys. Rev. B 72, 205313 (2005).
Pascucci, F., Conti, S., Neilson, D., Tempere, J. & Perali, A. Josephson effect as a signature of electron–hole superfluidity in bilayers of van der Waals heterostructures. Phys. Rev. B 106, L220503 (2022).
Hsu, Y.-F. & Su, J.-J. Single interface effects dominate in exciton-condensate/normal-barrier/exciton-condensate (EC/N/EC) structures of long-barrier. New J. Phys. 20, 083002 (2018).
Wang, T., Fan, R., Dai, Z. & Zaletel, M. P. Designing exciton-condensate Josephson junction in quantum Hall heterostructures. Preprint at https://doi.org/10.48550/arXiv.2409.19059 (2024).
Dolcini, F. et al. Blockade and counterflow supercurrent in exciton-condensate Josephson junctions. Phys. Rev. Lett. 104, 027004 (2010).
Wu, B. & Li, H. Probing the exciton condensate via shot noise spectroscopy in superconducting hybrid structures based on excitonic insulators. Phys. Rev. B 109, 125402 (2024).
Sun, Z., Kaneko, T., Golež, D. & Millis, A. J. Second-order Josephson effect in excitonic insulators. Phys. Rev. Lett. 127, 127702 (2021).
Zeng, Y., Crépel, V. & Millis, A. J. Keldysh field theory of dynamical exciton condensation transitions in nonequilibrium electron–hole bilayers. Phys. Rev. Lett. 132, 266001 (2024).
Sun, Z. et al. Dynamical exciton condensates in biased electron–hole bilayers. Phys. Rev. Lett. 133, 217002 (2024).
Gupta, S., Kutana, A. & Yakobson, B. I. Heterobilayers of 2D materials as a platform for excitonic superfluidity. Nat. Commun. 11, 2989 (2020).
Wang, Y., Dai, Y., Huang, B., Ang, Y. S. & Wei, W. Small exciton effective mass in quintuple-layer Bi2Se2Te: a material platform towards high-temperature excitonic condensate. Phys. Rev. B 110, 054513 (2024).
Hubert, C. et al. Attractive dipolar coupling between stacked exciton fluids. Phys. Rev. X 9, 021026 (2019).
Choksy, D. J. et al. Attractive and repulsive dipolar interaction in bilayers of indirect excitons. Phys. Rev. B 103, 045126 (2021).
Zimmerman, M., Rapaport, R. & Gazit, S. Collective interlayer pairing and pair superfluidity in vertically stacked layers of dipolar excitons. Proc. Natl Acad. Sci. USA 119, e2205845119 (2022).
Ulman, K. & Quek, S. Y. Organic-2D material heterostructures: a promising platform for exciton condensation and multiplication. Nano Lett. 21, 8888–8894 (2021).
Guo, H. L., Zhang, X. & Lu, G. Tuning moiré excitons in Janus heterobilayers for high-temperature Bose–Einstein condensation. Sci. Adv. 8, eabp9757 (2022).
Seradjeh, B., Moore, J. E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. Phys. Rev. Lett. 103, 066402 (2009).
Zhang, J. & Rossi, E. Chiral superfluid states in hybrid graphene heterostructures. Phys. Rev. Lett. 111, 086804 (2013).
Chansky, A. & Efimkin, D. K. Topological hybrid electron–hole Cooper pairing. Phys. Rev. B 108, 075433 (2023).
Pikulin, D. I. & Hyart, T. Interplay of exciton condensation and the quantum spin Hall effect in InAs/GaSb bilayers. Phys. Rev. Lett. 112, 176403 (2014).
Sinner, A., Lozovik, Y. E. & Ziegler, K. Electron pairing with gapless excitations in mixed double layers. Phys. Rev. B 104, 245124 (2021).
Froese, P., Neupert, T. & Wagner, G. Topological excitons in moiré MoTe2/WSe2 heterobilayers. Phys. Rev. Res. 7, 023047 (2025).
Xie, H.-Y., Ghaemi, P., Mitrano, M. & Uchoa, B. Theory of topological exciton insulators and condensates in flat Chern bands. Proc. Natl Acad. Sci. USA 121, e2401644121 (2024).
Zhu, Q., Tu, M. W.-Y., Tong, Q. & Yao, W. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv. 5, eaau6120 (2019).
Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).
Joglekar, Y. N., Balatsky, A. V. & Das Sarma, S. Wigner supersolid of excitons in electron–hole bilayers. Phys. Rev. B 74, 233302 (2006).
Pieri, P., Neilson, D. & Strinati, G. C. Effects of density imbalance on the BCS–BEC crossover in semiconductor electron–hole bilayers. Phys. Rev. B 75, 113301 (2007).
Saberi-Pouya, S. et al. Experimental conditions for the observation of electron–hole superfluidity in GaAs heterostructures. Phys. Rev. B 101, 140501 (2020).
Varley, J. R. & Lee, D. K. K. Structure of exciton condensates in imbalanced electron–hole bilayers. Phys. Rev. B 94, 174519 (2016).
Seradjeh, B. Topological exciton condensate of imbalanced electrons and holes. Phys. Rev. B 85, 235146 (2012).
Efimkin, D. K. & Lozovik, Yu. E. Electron–hole pairing with nonzero momentum in a graphene bilayer. J. Exp. Theor. Phys. 113, 880–886 (2011).
Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron–hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).
Zhu, J.-X. & Bishop, A. R. Exciton condensate modulation in electron–hole bilayers: a real-space visualization. Phys. Rev. B 81, 115329 (2010).
Wang, R., Sedrakyan, T. A., Wang, B., Du, L. & Du, R.-R. Excitonic topological order in imbalanced electron–hole bilayers. Nature 619, 57–62 (2023).
Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) grants, funded by the Korean Government (MSIT) (NRF-RS202400450540), the Institute for Basic Science (IBS-R036-D1), and the Hubei University of Technology, China.
Author information
Authors and Affiliations
Contributions
All authors contributed to the discussion of content and writing and editing of the manuscript. B.H.M. and A.M. also researched data for the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Moon, B.H., Mondal, A., Efimkin, D.K. et al. Exciton condensate in van der Waals layered materials. Nat Rev Phys 7, 388–401 (2025). https://doi.org/10.1038/s42254-025-00834-4
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00834-4


