Abstract
The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Mpemba, E. B. & Osborne, D. G. Cool? Phys. Educ. 4, 172 (1969).
Aristotle. Meterologica (Clarendon Press, 1923).
Bacon, R. Opus Majus (Russell and Russell, 1962).
Bacon, F. Novum Organum Scientiarum (Cambridge Univ. Press, 1620).
Descartes, R. Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences (Hackett, 1937).
Groves, L. R. Now It Can Be Told: The Story of the Manhattan Project (Harper & Row, 1962).
Burridge, H. C. & Linden, P. F. Questioning the Mpemba effect: hot water does not cool more quickly than cold. Sci. Rep. 6, 37665 (2016).
Burridge, H. C. & Hallstadius, O. Observing the Mpemba effect with minimal bias and the value of the Mpemba effect to scientific outreach and engagement. Proc. R. Soc. A 476, 20190829 (2020).
Greaney, A., Lani, G., Cicero, G. & Grossman, J. C. Mpemba-like behavior in carbon nanotube resonators. Metall. Mater. Trans. A 42, 3907 (2011).
Ahn, Y. H., Kang, H., Koh, D. Y. & Lee, H. Experimental verifications of Mpemba-like behaviors of clathrate hydrates. Korean J. Chem. Eng. 33, 1903 (2016).
Lasanta, A., Reyes, F. V., Prados, A. & Santos, A. When the hotter cools more quickly: Mpemba effect in granular fluids. Phys. Rev. Lett. 119, 148001 (2017).
Keller, T. et al. Quenches across the self-organization transition in multimode cavities. New J. Phys. 20, 025004 (2018).
Hu, C. et al. Conformation directed Mpemba effect on polylactide crystallization. Cryst. Growth Des. 18, 5757 (2018).
Baity-Jesi, M. et al. The Mpemba effect in spin glasses is a persistent memory effect. Proc. Natl Acad. Sci. USA 116, 15350 (2019).
Schwarzendahl, F. J. & Löwen, H. Anomalous cooling and overcooling of active colloids. Phys. Rev. Lett. 129, 138002 (2022).
Holtzman, R. & Raz, O. Landau theory for the Mpemba effect through phase transitions. Commun. Phys. 5, 280 (2022).
Teza, G., Yaacoby, R. & Raz, O. Relaxation shortcuts through boundary coupling. Phys. Rev. Lett. 131, 017101 (2023).
Pemartín, I. G.-A., Mompó, E., Lasanta, A., Martín-Mayor, V. & Salas, J. Shortcuts of freely relaxing systems using equilibrium physical observables. Phys. Rev. Lett. 132, 117102 (2024).
Lu, Z. & Raz, O. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse. Proc. Natl Acad. Sci. USA 114, 5083 (2017).
Klich, I., Raz, O., Hirschberg, O. & Vucelja, M. Mpemba index and anomalous relaxation. Phys. Rev. X 9, 021060 (2019).
Kumar, A. & Bechhoefer, J. Exponentially faster cooling in a colloidal system. Nature 584, 64 (2020).
Bechhoefer, J., Kumar, A. & Chétrite, R. A fresh understanding of the Mpemba effect. Nat. Rev. Phys. 3, 534 (2021).
Gal, A. & Raz, O. Precooling strategy allows exponentially faster heating. Phys. Rev. Lett. 124, 060602 (2020).
Kumar, A., Chétrite, R. & Bechhoefer, J. Anomalous heating in a colloidal system. Proc. Natl Acad. Sci. USA 119, e2118484119 (2022).
Walker, M. R. & Vucelja, M. Mpemba effect in terms of mean first passage times of overdamped Langevin dynamics on a double-well potential. Preprint at https://arxiv.org/abs/2212.07496 (2023).
Walker, M. R., Bera, S. & Vucelja, M. Optimal transport and anomalous thermal relaxations. Preprint at https://arxiv.org/abs/2307.16103 (2023).
Bera, S., Walker, M. R. & Vucelja, M. Effect of dynamics on anomalous thermal relaxations and information exchange. Preprint at https://arxiv.org/abs/2308.04557 (2023).
Santos, A. Mpemba meets Newton: exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys. Rev. E 109, 044149 (2024).
Vu, T. V. & Hayakawa, H. Thermomajorization Mpemba effect. Phys. Rev. Lett. 134, 107101 (2025).
Teza, G., Bechhoefer, J., Lasanta, A., Raz, O. & Vucelja, M. Speedups in nonequilibrium thermal relaxation: Mpemba and related effects. Preprint at https://arxiv.org/abs/2502.01758 (2025).
Chatterjee, A. K., Takada, S. & Hayakawa, H. Quantum Mpemba effect in a quantum dot with reservoirs. Phys. Rev. Lett. 131, 080402 (2023).
Manikandan, S. K. Equidistant quenches in few-level quantum systems. Phys. Rev. Res. 3, 043108 (2021).
Ivander, F., Anto-Sztrikacs, N. & Segal, D. Hyperacceleration of quantum thermalization dynamics by bypassing long-lived coherences: an analytical treatment. Phys. Rev. E 108, 014130 (2023).
Wang, X. & Wang, J. Mpemba effects in nonequilibrium open quantum systems. Phys. Rev. Res. 6, 033330 (2024).
Carollo, F., Lasanta, A. & Lesanovsky, I. Exponentially accelerated approach to stationarity in Markovian open quantum systems through the Mpemba effect. Phys. Rev. Lett. 127, 060401 (2021).
Strachan, D. J., Purkayastha, A. & Clark, S. R. Non-Markovian quantum Mpemba effect. Preprint at https://arxiv.org/abs/2402.05756 (2024).
Nava, A. & Egger, R. Mpemba effects in open nonequilibrium quantum systems. Phys. Rev. Lett. 133, 136302 (2024).
Ares, F., Murciano, S. & Calabrese, P. Entanglement asymmetry as a probe of symmetry breaking. Nat. Commun. 14, 2036 (2023).
Joshi, L. K. et al. Observing the quantum Mpemba effect in quantum simulations. Phys. Rev. Lett. 133, 010402 (2024).
Wang, X. & Schirmer, S. G. Contractivity of the Hilbert–Schmidt distance under open-system dynamics. Phys. Rev. A 79, 052326 (2009).
Moroder, M., Culhane, O., Zawadzki, K. & Goold, J. Thermodynamics of the quantum Mpemba effect. Phys. Rev. Lett. 133, 140404 (2024).
Zhang, J. et al. Observation of quantum strong Mpemba effect. Nat. Commun. 16, 301 (2025).
Vaccaro, J. A., Anselmi, F., Wiseman, H. M. & Jacobs, K. Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 77, 032114 (2008).
Gour, G., Marvian, I. & Spekkens, R. W. Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009).
Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).
Casini, H., Huerta, M., Magán, J. M. & Pontello, D. Entanglement entropy and super-selection sectors. Part I. Global symmetries. J. High Energy Phys. 02, 014 (2020).
Casini, H., Huerta, M., Magán, J. M. & Pontello, D. Entropic order parameters for the phases of QFT. J. High Energy Phys. 04, 277 (2021).
Auerbach, D. Supercooling and the Mpemba effect: when hot water freezes quicker than cold. Am. J. Phys. 63, 882 (1995).
Esposito, S., Risi, R. D. & Somma, L. Mpemba effect and phase transitions in the adiabatic cooling of water before freezing. Phys. A 387, 757 (2008).
Nava, A. & Fabrizio, M. Lindblad dissipative dynamics in the presence of phase coexistence. Phys. Rev. B 100, 125102 (2019).
Bettmann, L. P. & Goold, J. Information geometry approach to quantum stochastic thermodynamics. Phys. Rev. E 111, 014133 (2025).
Chatterjee, A. K., Takada, S. & Hayakawa, H. Multiple quantum Mpemba effect: exceptional points and oscillations. Phys. Rev. A 110, 022213 (2024).
Shapira, S. A. et al. Inverse Mpemba effect demonstrated on a single trapped ion qubit. Phys. Rev. Lett. 133, 010403 (2024).
Kochsiek, S., Carollo, F. & Lesanovsky, I. Accelerating the approach of dissipative quantum spin systems towards stationarity through global spin rotations. Phys. Rev. A 106, 012207 (2022).
Bao, R. & Hou, Z. Accelerating relaxation in Markovian open quantum systems through quantum reset processes. Preprint at https://arxiv.org/abs/2212.11170 (2025).
Zhou, Y.-L. et al. Accelerating relaxation through Liouvillian exceptional point. Phys. Rev. Res. 5, 043036 (2023).
Liu, D. et al. Speeding up quantum heat engines by the Mpemba effect. Phys. Rev. A 110, 042218 (2024).
Longhi, S. Photonic Mpemba effect. Opt. Lett. 49, 5188 (2024).
Longhi, S. Bosonic Mpemba effect with non-classical states of light. APL Quantum 1, 046110 (2024).
Boubakour, M., Endo, S., Fogarty, T. & Busch, T. Dynamical invariant based shortcut to equilibration in open quantum systems. Quantum Sci. Technol. 10, 025036 (2025).
Edo, M. E. & Wu, L.-A. Study on quantum thermalization from thermal initial states in a superconducting quantum computer. Preprint at https://arxiv.org/abs/2403.14630 (2024).
Wang, X., Su, J. & Wang, J. Mpemba meets quantum chaos: anomalous relaxation and Mpemba crossings in dissipative Sachdev–Ye–Kitaev models. Preprint at https://arxiv.org/abs/2410.06669 (2024).
Longhi, S. Mpemba effect and super-accelerated thermalization in the damped quantum harmonic oscillator. Quantum 9, 1677 (2025).
Furtado, J. & Santos, A. C. Strong quantum Mpemba effect with squeezed thermal reservoirs. Preprint at https://arxiv.org/abs/2411.04545 (2024).
Qian, D., Wang, H. & Wang, J. Intrinsic quantum Mpemba effect in Markovian systems and quantum circuits. Preprint at https://arxiv.org/abs/2411.18417 (2025).
Dong, J., Mu, H., Qin, M. & Cui, H. Quantum Mpemba effect of localization in the dissipative Mosaic model. Phys. Rev. A 111, 022215 (2025).
Medina, I., Culhane, O., Binder, F. C., Landi, G. T. & Goold, J. Anomalous discharging of quantum batteries: the ergotropic Mpemba effect. Preprint at https://arxiv.org/abs/2412.13259 (2024).
Kheirandish, F., Cheraghpour, N. & Moradian, A. The Mpemba effect in quantum oscillating and two-level systems. Preprint at https://arxiv.org/abs/2412.03943 (2024).
Graf, J., Splettstoesser, J. & Monsel, J. Role of electron–electron interaction in the Mpemba effect in quantum dots. J. Phys. Condens. Matter 37, 195302 (2025).
Zatsarynna, K., Nava, A., Egger, R. & Zazunov, A. Green’s function approach to Josephson dot dynamics and application to quantum Mpemba effects. Phys. Rev. B 111, 104506 (2025).
Alyürük, D. C., Yeşiller, M. H., Vedral, V. & Pusuluk, O. Thermodynamic limits of the Mpemba effect: a unified resource theory analysis. Preprint at https://arxiv.org/abs/2502.00123 (2025).
Wang, Z.-M., Wu, S. L., Byrd, M. S. & Wu, L.-A. Going beyond quantum Markovianity and back to reality: an exact master equation study. Preprint at https://arxiv.org/abs/2411.17197 (2024).
Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991).
Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).
Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).
Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008).
Ares, F., Murciano, S., Vernier, E. & Calabrese, P. Lack of symmetry restoration after a quantum quench: an entanglement asymmetry study. SciPost Phys. 15, 089 (2023).
Rylands, C. et al. Microscopic origin of the quantum Mpemba effect in integrable systems. Phys. Rev. Lett. 133, 010401 (2024).
Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, P04010 (2005).
Alba, V. & Calabrese, P. Entanglement and thermodynamics after a quantum quench in integrable systems. Proc. Natl Acad. Sci. USA 114, 7947 (2017).
Alba, V. & Calabrese, P. Entanglement dynamics after quantum quenches in generic integrable systems. SciPost Phys. 4, 017 (2018).
Murciano, S., Ares, F., Klich, I. & Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in the XY spin chain. J. Stat. Mech. 2024, 013103 (2024).
Klobas, K. Non-equilibrium dynamics of symmetry-resolved entanglement and entanglement asymmetry: exact asymptotics in Rule 54. J. Phys. A 57, 505001 (2024).
Rylands, C., Vernier, E. & Calabrese, P. Dynamical symmetry restoration in the Heisenberg spin chain. J. Stat. Mech 2024, 123102 (2024).
Chalas, K., Ares, F., Rylands, C. & Calabrese, P. Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect. J. Stat. Mech. 2024, 103101 (2024).
Ferro, F., Ares, F. & Calabrese, P. Non-equilibrium entanglement asymmetry for discrete groups: the example of the XY spin chain. J. Stat. Mech. 2024, 023101 (2024).
Yamashika, S., Ares, F. & Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems. Phys. Rev. B 110, 085126 (2024).
Yamashika, S., Calabrese, P. & Ares, F. Quenching from superfluid to free bosons in two dimensions: entanglement, symmetries, and quantum Mpemba effect. Phys. Rev. A 111, 043304 (2025).
Caceffo, F., Murciano, S. & Alba, V. Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems. J. Stat. Mech. 2024, 063103 (2024).
Ares, F., Vitale, V. & Murciano, S. The quantum Mpemba effect in free-fermionic mixed states. Phys. Rev. B 111, 104312 (2025).
Benini, F., Godet, V. & Singh, A. H. Entanglement asymmetry in conformal field theory and holography. Preprint at https://arxiv.org/abs/2407.07969 (2025).
Banerjee, T., Das, S. & Sengupta, K. Entanglement asymmetry in periodically driven quantum systems. Preprint at https://arxiv.org/abs/2412.03654 (2024).
Turkeshi, X., Calabrese, P. & Luca, A. D. Quantum Mpemba effect in random circuits. Preprint at https://arxiv.org/abs/2405.14514 (2024).
Liu, S., Zhang, H.-K., Yin, S. & Zhang, S.-X. Symmetry restoration and quantum Mpemba effect in symmetric random circuits. Phys. Rev. Lett. 133, 140405 (2024).
Klobas, K., Rylands, C. & Bertini, B. Translation symmetry restoration under random unitary dynamics. Phys. Rev. B 111, L140304 (2025).
Yu, H., Li, Z.-X. & Zhang, S.-X. Symmetry breaking dynamics in quantum many-body systems. Preprint at https://arxiv.org/abs/2501.13459 (2025).
Ares, F., Murciano, S., Calabrese, P. & Piroli, L. Entanglement asymmetry dynamics in random quantum circuits. Preprint at https://arxiv.org/abs/2501.12459 (2025).
Liu, S., Zhang, H.-K., Yin, S., Zhang, S.-X. & Yao, H. Quantum Mpemba effects in many-body localization systems. Preprint at https://arxiv.org/abs/2408.07750 (2024).
Foligno, A., Calabrese, P. & Bertini, B. Non-equilibrium dynamics of charged dual-unitary circuits. PRX Quantum 6, 010324 (2025).
Kells, G., Meidan, D. & Romito, A. Topological transitions with continuously monitored free fermions. SciPost Phys. 14, 031 (2023).
Fava, M., Piroli, L., Swann, T., Bernard, D. & Nahum, A. Nonlinear sigma models for monitored dynamics of free fermions. Phys. Rev. X 13, 041045 (2023).
Poboiko, I., Pöpperl, P., Gornyi, I. V. & Mirlin, A. D. Theory of free fermions under random projective measurements. Phys. Rev. X 13, 041046 (2023).
Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).
Li, Y., Chen, X. & Fisher, M. P. A. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).
Agrawal, U. et al. Entanglement and charge-sharpening transitions in U(1) symmetric monitored quantum circuits. Phys. Rev. X 12, 041002 (2022).
Chan, A., Nandkishore, R. M., Pretko, M. & Smith, G. Unitary-projective entanglement dynamics. Phys. Rev. B 99, 224307 (2019).
Klich, I. & Vucelja, M. Solution of the Metropolis dynamics on a complete graph with application to the Markov chain Mpemba effect. Preprint at https://arxiv.org/abs/1812.11962 (2019).
Lin, J., Li, K., He, J., Ren, J. & Wang, J. Power statistics of Otto heat engines with the Mpemba effect. Phys. Rev. E 105, 014104 (2022).
Acknowledgements
The authors are deeply grateful to the many physicists who have collaborated with them over the past few years on the study of the quantum Mpemba effect. In particular, the authors thank V. Alba, B. Bertini, R. Blatt, F. Caceffo, K. Chalas, A. De Luca, F. Ferro, A. Foligno, J. Franke, L. Kh. Joshi, M. Joshi, I. Klich, K. Klobas, F. Kranzl, L. Piroli, A. Rath, C. Roos, C. Rylands, X. Turkeshi, B. Vermersch, E. Vernier, V. Vitale, S. Yamashika and P. Zoller. P.C. and F.A. acknowledge support from ERC under Consolidator Grant no. 771536 (NEMO) and from European Union — NextGenerationEU, in the framework of the PRIN Project HIGHEST no. 2022SJCKAH_002. S.M. acknowledges the support from the Walter Burke Institute for Theoretical Physics and the Institute for Quantum Information and Matter at Caltech.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ares, F., Calabrese, P. & Murciano, S. The quantum Mpemba effects. Nat Rev Phys 7, 451–460 (2025). https://doi.org/10.1038/s42254-025-00838-0
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00838-0
This article is cited by
-
Study on quantum thermalization from thermal initial states in a superconducting quantum computer
Scientific Reports (2025)


