Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The quantum Mpemba effects

Abstract

The Mpemba effect, in which a hotter system can equilibrate faster than a cooler one, has long been a subject of fascination in classical physics. In the past few years, notable theoretical and experimental progress has been made in understanding its occurrence in both classical and quantum systems. In this Perspective, we provide a concise overview of recent work and open questions on the Mpemba effect in quantum systems, with a focus on both open and isolated dynamics, which give rise to distinct manifestations of this anomalous non-equilibrium phenomenon. We discuss key theoretical frameworks, highlight experimental observations and explore the fundamental mechanisms that give rise to anomalous relaxation behaviours. Particular attention is given to the role of quantum fluctuations, integrability and symmetry in shaping equilibration pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental observation of three quantum Mpemba effects.
Fig. 2: Reduced density matrix ρA and its symmetrization ρA,Q that enter in the definition of the entanglement asymmetry.
Fig. 3: Time evolution of the entanglement asymmetry in different systems.
Fig. 4: The quasiparticle picture for the entanglement asymmetry.

Similar content being viewed by others

References

  1. Mpemba, E. B. & Osborne, D. G. Cool? Phys. Educ. 4, 172 (1969).

    Article  ADS  Google Scholar 

  2. Aristotle. Meterologica (Clarendon Press, 1923).

  3. Bacon, R. Opus Majus (Russell and Russell, 1962).

  4. Bacon, F. Novum Organum Scientiarum (Cambridge Univ. Press, 1620).

  5. Descartes, R. Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences (Hackett, 1937).

  6. Groves, L. R. Now It Can Be Told: The Story of the Manhattan Project (Harper & Row, 1962).

  7. Burridge, H. C. & Linden, P. F. Questioning the Mpemba effect: hot water does not cool more quickly than cold. Sci. Rep. 6, 37665 (2016).

    Article  ADS  Google Scholar 

  8. Burridge, H. C. & Hallstadius, O. Observing the Mpemba effect with minimal bias and the value of the Mpemba effect to scientific outreach and engagement. Proc. R. Soc. A 476, 20190829 (2020).

    Article  ADS  Google Scholar 

  9. Greaney, A., Lani, G., Cicero, G. & Grossman, J. C. Mpemba-like behavior in carbon nanotube resonators. Metall. Mater. Trans. A 42, 3907 (2011).

    Article  Google Scholar 

  10. Ahn, Y. H., Kang, H., Koh, D. Y. & Lee, H. Experimental verifications of Mpemba-like behaviors of clathrate hydrates. Korean J. Chem. Eng. 33, 1903 (2016).

    Article  Google Scholar 

  11. Lasanta, A., Reyes, F. V., Prados, A. & Santos, A. When the hotter cools more quickly: Mpemba effect in granular fluids. Phys. Rev. Lett. 119, 148001 (2017).

    Article  ADS  Google Scholar 

  12. Keller, T. et al. Quenches across the self-organization transition in multimode cavities. New J. Phys. 20, 025004 (2018).

    Article  ADS  Google Scholar 

  13. Hu, C. et al. Conformation directed Mpemba effect on polylactide crystallization. Cryst. Growth Des. 18, 5757 (2018).

    Article  Google Scholar 

  14. Baity-Jesi, M. et al. The Mpemba effect in spin glasses is a persistent memory effect. Proc. Natl Acad. Sci. USA 116, 15350 (2019).

    Article  ADS  Google Scholar 

  15. Schwarzendahl, F. J. & Löwen, H. Anomalous cooling and overcooling of active colloids. Phys. Rev. Lett. 129, 138002 (2022).

    Article  ADS  Google Scholar 

  16. Holtzman, R. & Raz, O. Landau theory for the Mpemba effect through phase transitions. Commun. Phys. 5, 280 (2022).

    Article  Google Scholar 

  17. Teza, G., Yaacoby, R. & Raz, O. Relaxation shortcuts through boundary coupling. Phys. Rev. Lett. 131, 017101 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  18. Pemartín, I. G.-A., Mompó, E., Lasanta, A., Martín-Mayor, V. & Salas, J. Shortcuts of freely relaxing systems using equilibrium physical observables. Phys. Rev. Lett. 132, 117102 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  19. Lu, Z. & Raz, O. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse. Proc. Natl Acad. Sci. USA 114, 5083 (2017).

    Article  ADS  Google Scholar 

  20. Klich, I., Raz, O., Hirschberg, O. & Vucelja, M. Mpemba index and anomalous relaxation. Phys. Rev. X 9, 021060 (2019).

    Google Scholar 

  21. Kumar, A. & Bechhoefer, J. Exponentially faster cooling in a colloidal system. Nature 584, 64 (2020).

    Article  ADS  Google Scholar 

  22. Bechhoefer, J., Kumar, A. & Chétrite, R. A fresh understanding of the Mpemba effect. Nat. Rev. Phys. 3, 534 (2021).

    Article  Google Scholar 

  23. Gal, A. & Raz, O. Precooling strategy allows exponentially faster heating. Phys. Rev. Lett. 124, 060602 (2020).

    Article  ADS  Google Scholar 

  24. Kumar, A., Chétrite, R. & Bechhoefer, J. Anomalous heating in a colloidal system. Proc. Natl Acad. Sci. USA 119, e2118484119 (2022).

    Article  Google Scholar 

  25. Walker, M. R. & Vucelja, M. Mpemba effect in terms of mean first passage times of overdamped Langevin dynamics on a double-well potential. Preprint at https://arxiv.org/abs/2212.07496 (2023).

  26. Walker, M. R., Bera, S. & Vucelja, M. Optimal transport and anomalous thermal relaxations. Preprint at https://arxiv.org/abs/2307.16103 (2023).

  27. Bera, S., Walker, M. R. & Vucelja, M. Effect of dynamics on anomalous thermal relaxations and information exchange. Preprint at https://arxiv.org/abs/2308.04557 (2023).

  28. Santos, A. Mpemba meets Newton: exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys. Rev. E 109, 044149 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  29. Vu, T. V. & Hayakawa, H. Thermomajorization Mpemba effect. Phys. Rev. Lett. 134, 107101 (2025).

    Article  Google Scholar 

  30. Teza, G., Bechhoefer, J., Lasanta, A., Raz, O. & Vucelja, M. Speedups in nonequilibrium thermal relaxation: Mpemba and related effects. Preprint at https://arxiv.org/abs/2502.01758 (2025).

  31. Chatterjee, A. K., Takada, S. & Hayakawa, H. Quantum Mpemba effect in a quantum dot with reservoirs. Phys. Rev. Lett. 131, 080402 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  32. Manikandan, S. K. Equidistant quenches in few-level quantum systems. Phys. Rev. Res. 3, 043108 (2021).

    Article  Google Scholar 

  33. Ivander, F., Anto-Sztrikacs, N. & Segal, D. Hyperacceleration of quantum thermalization dynamics by bypassing long-lived coherences: an analytical treatment. Phys. Rev. E 108, 014130 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  34. Wang, X. & Wang, J. Mpemba effects in nonequilibrium open quantum systems. Phys. Rev. Res. 6, 033330 (2024).

    Article  Google Scholar 

  35. Carollo, F., Lasanta, A. & Lesanovsky, I. Exponentially accelerated approach to stationarity in Markovian open quantum systems through the Mpemba effect. Phys. Rev. Lett. 127, 060401 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  36. Strachan, D. J., Purkayastha, A. & Clark, S. R. Non-Markovian quantum Mpemba effect. Preprint at https://arxiv.org/abs/2402.05756 (2024).

  37. Nava, A. & Egger, R. Mpemba effects in open nonequilibrium quantum systems. Phys. Rev. Lett. 133, 136302 (2024).

    Article  MathSciNet  Google Scholar 

  38. Ares, F., Murciano, S. & Calabrese, P. Entanglement asymmetry as a probe of symmetry breaking. Nat. Commun. 14, 2036 (2023).

    Article  ADS  Google Scholar 

  39. Joshi, L. K. et al. Observing the quantum Mpemba effect in quantum simulations. Phys. Rev. Lett. 133, 010402 (2024).

    Article  Google Scholar 

  40. Wang, X. & Schirmer, S. G. Contractivity of the Hilbert–Schmidt distance under open-system dynamics. Phys. Rev. A 79, 052326 (2009).

    Article  ADS  Google Scholar 

  41. Moroder, M., Culhane, O., Zawadzki, K. & Goold, J. Thermodynamics of the quantum Mpemba effect. Phys. Rev. Lett. 133, 140404 (2024).

    Article  MathSciNet  Google Scholar 

  42. Zhang, J. et al. Observation of quantum strong Mpemba effect. Nat. Commun. 16, 301 (2025).

    Article  Google Scholar 

  43. Vaccaro, J. A., Anselmi, F., Wiseman, H. M. & Jacobs, K. Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules. Phys. Rev. A 77, 032114 (2008).

    Article  ADS  Google Scholar 

  44. Gour, G., Marvian, I. & Spekkens, R. W. Measuring the quality of a quantum reference frame: the relative entropy of frameness. Phys. Rev. A 80, 012307 (2009).

    Article  ADS  Google Scholar 

  45. Chitambar, E. & Gour, G. Quantum resource theories. Rev. Mod. Phys. 91, 025001 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  46. Casini, H., Huerta, M., Magán, J. M. & Pontello, D. Entanglement entropy and super-selection sectors. Part I. Global symmetries. J. High Energy Phys. 02, 014 (2020).

    Article  ADS  Google Scholar 

  47. Casini, H., Huerta, M., Magán, J. M. & Pontello, D. Entropic order parameters for the phases of QFT. J. High Energy Phys. 04, 277 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  48. Auerbach, D. Supercooling and the Mpemba effect: when hot water freezes quicker than cold. Am. J. Phys. 63, 882 (1995).

    Article  ADS  Google Scholar 

  49. Esposito, S., Risi, R. D. & Somma, L. Mpemba effect and phase transitions in the adiabatic cooling of water before freezing. Phys. A 387, 757 (2008).

    Article  Google Scholar 

  50. Nava, A. & Fabrizio, M. Lindblad dissipative dynamics in the presence of phase coexistence. Phys. Rev. B 100, 125102 (2019).

    Article  ADS  Google Scholar 

  51. Bettmann, L. P. & Goold, J. Information geometry approach to quantum stochastic thermodynamics. Phys. Rev. E 111, 014133 (2025).

    Article  MathSciNet  Google Scholar 

  52. Chatterjee, A. K., Takada, S. & Hayakawa, H. Multiple quantum Mpemba effect: exceptional points and oscillations. Phys. Rev. A 110, 022213 (2024).

    Article  MathSciNet  Google Scholar 

  53. Shapira, S. A. et al. Inverse Mpemba effect demonstrated on a single trapped ion qubit. Phys. Rev. Lett. 133, 010403 (2024).

    Article  Google Scholar 

  54. Kochsiek, S., Carollo, F. & Lesanovsky, I. Accelerating the approach of dissipative quantum spin systems towards stationarity through global spin rotations. Phys. Rev. A 106, 012207 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  55. Bao, R. & Hou, Z. Accelerating relaxation in Markovian open quantum systems through quantum reset processes. Preprint at https://arxiv.org/abs/2212.11170 (2025).

  56. Zhou, Y.-L. et al. Accelerating relaxation through Liouvillian exceptional point. Phys. Rev. Res. 5, 043036 (2023).

    Article  Google Scholar 

  57. Liu, D. et al. Speeding up quantum heat engines by the Mpemba effect. Phys. Rev. A 110, 042218 (2024).

    Article  MathSciNet  Google Scholar 

  58. Longhi, S. Photonic Mpemba effect. Opt. Lett. 49, 5188 (2024).

    Article  Google Scholar 

  59. Longhi, S. Bosonic Mpemba effect with non-classical states of light. APL Quantum 1, 046110 (2024).

    Article  Google Scholar 

  60. Boubakour, M., Endo, S., Fogarty, T. & Busch, T. Dynamical invariant based shortcut to equilibration in open quantum systems. Quantum Sci. Technol. 10, 025036 (2025).

    Article  Google Scholar 

  61. Edo, M. E. & Wu, L.-A. Study on quantum thermalization from thermal initial states in a superconducting quantum computer. Preprint at https://arxiv.org/abs/2403.14630 (2024).

  62. Wang, X., Su, J. & Wang, J. Mpemba meets quantum chaos: anomalous relaxation and Mpemba crossings in dissipative Sachdev–Ye–Kitaev models. Preprint at https://arxiv.org/abs/2410.06669 (2024).

  63. Longhi, S. Mpemba effect and super-accelerated thermalization in the damped quantum harmonic oscillator. Quantum 9, 1677 (2025).

    Article  Google Scholar 

  64. Furtado, J. & Santos, A. C. Strong quantum Mpemba effect with squeezed thermal reservoirs. Preprint at https://arxiv.org/abs/2411.04545 (2024).

  65. Qian, D., Wang, H. & Wang, J. Intrinsic quantum Mpemba effect in Markovian systems and quantum circuits. Preprint at https://arxiv.org/abs/2411.18417 (2025).

  66. Dong, J., Mu, H., Qin, M. & Cui, H. Quantum Mpemba effect of localization in the dissipative Mosaic model. Phys. Rev. A 111, 022215 (2025).

    Article  MathSciNet  Google Scholar 

  67. Medina, I., Culhane, O., Binder, F. C., Landi, G. T. & Goold, J. Anomalous discharging of quantum batteries: the ergotropic Mpemba effect. Preprint at https://arxiv.org/abs/2412.13259 (2024).

  68. Kheirandish, F., Cheraghpour, N. & Moradian, A. The Mpemba effect in quantum oscillating and two-level systems. Preprint at https://arxiv.org/abs/2412.03943 (2024).

  69. Graf, J., Splettstoesser, J. & Monsel, J. Role of electron–electron interaction in the Mpemba effect in quantum dots. J. Phys. Condens. Matter 37, 195302 (2025).

    Article  Google Scholar 

  70. Zatsarynna, K., Nava, A., Egger, R. & Zazunov, A. Green’s function approach to Josephson dot dynamics and application to quantum Mpemba effects. Phys. Rev. B 111, 104506 (2025).

    Article  Google Scholar 

  71. Alyürük, D. C., Yeşiller, M. H., Vedral, V. & Pusuluk, O. Thermodynamic limits of the Mpemba effect: a unified resource theory analysis. Preprint at https://arxiv.org/abs/2502.00123 (2025).

  72. Wang, Z.-M., Wu, S. L., Byrd, M. S. & Wu, L.-A. Going beyond quantum Markovianity and back to reality: an exact master equation study. Preprint at https://arxiv.org/abs/2411.17197 (2024).

  73. Deutsch, J. M. Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046 (1991).

    Article  ADS  Google Scholar 

  74. Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994).

    Article  ADS  Google Scholar 

  75. Rigol, M., Dunjko, V., Yurovsky, V. & Olshanii, M. Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. Phys. Rev. Lett. 98, 050405 (2007).

    Article  ADS  Google Scholar 

  76. Rigol, M., Dunjko, V. & Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008).

    Article  ADS  Google Scholar 

  77. Ares, F., Murciano, S., Vernier, E. & Calabrese, P. Lack of symmetry restoration after a quantum quench: an entanglement asymmetry study. SciPost Phys. 15, 089 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  78. Rylands, C. et al. Microscopic origin of the quantum Mpemba effect in integrable systems. Phys. Rev. Lett. 133, 010401 (2024).

    Article  MathSciNet  Google Scholar 

  79. Calabrese, P. & Cardy, J. Evolution of entanglement entropy in one-dimensional systems. J. Stat. Mech. 2005, P04010 (2005).

    Article  MathSciNet  Google Scholar 

  80. Alba, V. & Calabrese, P. Entanglement and thermodynamics after a quantum quench in integrable systems. Proc. Natl Acad. Sci. USA 114, 7947 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  81. Alba, V. & Calabrese, P. Entanglement dynamics after quantum quenches in generic integrable systems. SciPost Phys. 4, 017 (2018).

    Article  ADS  Google Scholar 

  82. Murciano, S., Ares, F., Klich, I. & Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in the XY spin chain. J. Stat. Mech. 2024, 013103 (2024).

    Article  MathSciNet  Google Scholar 

  83. Klobas, K. Non-equilibrium dynamics of symmetry-resolved entanglement and entanglement asymmetry: exact asymptotics in Rule 54. J. Phys. A 57, 505001 (2024).

    Article  MathSciNet  Google Scholar 

  84. Rylands, C., Vernier, E. & Calabrese, P. Dynamical symmetry restoration in the Heisenberg spin chain. J. Stat. Mech 2024, 123102 (2024).

    Article  MathSciNet  Google Scholar 

  85. Chalas, K., Ares, F., Rylands, C. & Calabrese, P. Multiple crossing during dynamical symmetry restoration and implications for the quantum Mpemba effect. J. Stat. Mech. 2024, 103101 (2024).

    Article  MathSciNet  Google Scholar 

  86. Ferro, F., Ares, F. & Calabrese, P. Non-equilibrium entanglement asymmetry for discrete groups: the example of the XY spin chain. J. Stat. Mech. 2024, 023101 (2024).

    Article  MathSciNet  Google Scholar 

  87. Yamashika, S., Ares, F. & Calabrese, P. Entanglement asymmetry and quantum Mpemba effect in two-dimensional free-fermion systems. Phys. Rev. B 110, 085126 (2024).

    Article  Google Scholar 

  88. Yamashika, S., Calabrese, P. & Ares, F. Quenching from superfluid to free bosons in two dimensions: entanglement, symmetries, and quantum Mpemba effect. Phys. Rev. A 111, 043304 (2025).

    Article  MathSciNet  Google Scholar 

  89. Caceffo, F., Murciano, S. & Alba, V. Entangled multiplets, asymmetry, and quantum Mpemba effect in dissipative systems. J. Stat. Mech. 2024, 063103 (2024).

    Article  MathSciNet  Google Scholar 

  90. Ares, F., Vitale, V. & Murciano, S. The quantum Mpemba effect in free-fermionic mixed states. Phys. Rev. B 111, 104312 (2025).

    Article  Google Scholar 

  91. Benini, F., Godet, V. & Singh, A. H. Entanglement asymmetry in conformal field theory and holography. Preprint at https://arxiv.org/abs/2407.07969 (2025).

  92. Banerjee, T., Das, S. & Sengupta, K. Entanglement asymmetry in periodically driven quantum systems. Preprint at https://arxiv.org/abs/2412.03654 (2024).

  93. Turkeshi, X., Calabrese, P. & Luca, A. D. Quantum Mpemba effect in random circuits. Preprint at https://arxiv.org/abs/2405.14514 (2024).

  94. Liu, S., Zhang, H.-K., Yin, S. & Zhang, S.-X. Symmetry restoration and quantum Mpemba effect in symmetric random circuits. Phys. Rev. Lett. 133, 140405 (2024).

    Article  MathSciNet  Google Scholar 

  95. Klobas, K., Rylands, C. & Bertini, B. Translation symmetry restoration under random unitary dynamics. Phys. Rev. B 111, L140304 (2025).

    Article  Google Scholar 

  96. Yu, H., Li, Z.-X. & Zhang, S.-X. Symmetry breaking dynamics in quantum many-body systems. Preprint at https://arxiv.org/abs/2501.13459 (2025).

  97. Ares, F., Murciano, S., Calabrese, P. & Piroli, L. Entanglement asymmetry dynamics in random quantum circuits. Preprint at https://arxiv.org/abs/2501.12459 (2025).

  98. Liu, S., Zhang, H.-K., Yin, S., Zhang, S.-X. & Yao, H. Quantum Mpemba effects in many-body localization systems. Preprint at https://arxiv.org/abs/2408.07750 (2024).

  99. Foligno, A., Calabrese, P. & Bertini, B. Non-equilibrium dynamics of charged dual-unitary circuits. PRX Quantum 6, 010324 (2025).

    Article  Google Scholar 

  100. Kells, G., Meidan, D. & Romito, A. Topological transitions with continuously monitored free fermions. SciPost Phys. 14, 031 (2023).

    Article  Google Scholar 

  101. Fava, M., Piroli, L., Swann, T., Bernard, D. & Nahum, A. Nonlinear sigma models for monitored dynamics of free fermions. Phys. Rev. X 13, 041045 (2023).

    Google Scholar 

  102. Poboiko, I., Pöpperl, P., Gornyi, I. V. & Mirlin, A. D. Theory of free fermions under random projective measurements. Phys. Rev. X 13, 041046 (2023).

    Google Scholar 

  103. Skinner, B., Ruhman, J. & Nahum, A. Measurement-induced phase transitions in the dynamics of entanglement. Phys. Rev. X 9, 031009 (2019).

    Google Scholar 

  104. Li, Y., Chen, X. & Fisher, M. P. A. Quantum Zeno effect and the many-body entanglement transition. Phys. Rev. B 98, 205136 (2018).

    Article  ADS  Google Scholar 

  105. Agrawal, U. et al. Entanglement and charge-sharpening transitions in U(1) symmetric monitored quantum circuits. Phys. Rev. X 12, 041002 (2022).

    Google Scholar 

  106. Chan, A., Nandkishore, R. M., Pretko, M. & Smith, G. Unitary-projective entanglement dynamics. Phys. Rev. B 99, 224307 (2019).

    Article  ADS  Google Scholar 

  107. Klich, I. & Vucelja, M. Solution of the Metropolis dynamics on a complete graph with application to the Markov chain Mpemba effect. Preprint at https://arxiv.org/abs/1812.11962 (2019).

  108. Lin, J., Li, K., He, J., Ren, J. & Wang, J. Power statistics of Otto heat engines with the Mpemba effect. Phys. Rev. E 105, 014104 (2022).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the many physicists who have collaborated with them over the past few years on the study of the quantum Mpemba effect. In particular, the authors thank V. Alba, B. Bertini, R. Blatt, F. Caceffo, K. Chalas, A. De Luca, F. Ferro, A. Foligno, J. Franke, L. Kh. Joshi, M. Joshi, I. Klich, K. Klobas, F. Kranzl, L. Piroli, A. Rath, C. Roos, C. Rylands, X. Turkeshi, B. Vermersch, E. Vernier, V. Vitale, S. Yamashika and P. Zoller. P.C. and F.A. acknowledge support from ERC under Consolidator Grant no. 771536 (NEMO) and from European Union — NextGenerationEU, in the framework of the PRIN Project HIGHEST no. 2022SJCKAH_002. S.M. acknowledges the support from the Walter Burke Institute for Theoretical Physics and the Institute for Quantum Information and Matter at Caltech.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the writing of the manuscript.

Corresponding author

Correspondence to Pasquale Calabrese.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ares, F., Calabrese, P. & Murciano, S. The quantum Mpemba effects. Nat Rev Phys 7, 451–460 (2025). https://doi.org/10.1038/s42254-025-00838-0

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00838-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing