Abstract
In high-energy and astroparticle physics, event generators have an essential role, even in the simplest data analyses. Physical processes occurring in hadronic collisions are simulated within a Monte Carlo framework but a major challenge remains modelling of hadron dynamics at low momentum transfer, which includes the initial and final phases of every hadronic collision. Phenomenological models inspired by quantum chromodynamics used for these phases cannot guarantee completeness or correctness over the full phase space. These models usually include parameters which must be tuned to suitable experimental data. Until now, event generators have primarily been developed and tuned based on data from high-energy physics experiments at accelerators. However, in many cases, they have been found to not satisfactorily describe data from astroparticle experiments, which provide sensitivity especially to hadrons produced nearly parallel to the collision axis and cover centre-of-mass energies up to several hundred tera-electronvolts, well beyond those reached at colliders so far. Here, we address the complementarity of these two sets of data and present a roadmap for a unified tuning of event generators with accelerator-based and astroparticle data.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Navas, S. et al. Review of particle physics. Phys. Rev. D 110, 030001 (2024).
Barone, G. et al. Higgs production via vector–boson fusion at the LHC. SciPost Phys. Comm. Rep. https://doi.org/10.21468/SciPostPhysCommRep.13 (2025).
Blumer, J., Engel, R. & Horandel, J. R. Cosmic rays from the knee to the highest energies. Prog. Part. Nucl. Phys. 63, 293–338 (2009).
Kampert, K.-H. & Unger, M. Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 35, 660–678 (2012).
The Pierre Auger Collaboration. The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Methods Phys. Res. A 798, 172–213 (2015).
Bastieri, D. et al. Using the photons from the Crab Nebula seen by GLAST to calibrate MAGIC and the imaging air Cerenkov telescopes. Astropart. Phys. 23, 572–576 (2005).
Meyer, M., Horns, D. & Zechlin, H. S. The Crab Nebula as a standard candle in very high-energy astrophysics. Astron. Astrophys. 523, A2 (2010).
Albrecht, J. et al. The muon puzzle in cosmic-ray induced air showers and its connection to the Large Hadron Collider. Astrophys. Space Sci. 367, 27 (2022).
Sterman, G. et al. Handbook of perturbative QCD. Rev. Mod. Phys. 67, 157–248 (1995).
Kalaydzhyan, T. & Shuryak, E. Collective flow in high-multiplicity proton–proton collisions. Phys. Rev. C 91, 054913 (2015).
Adam, J. et al. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 13, 535–539 (2017).
Baur, S. et al. Combined analysis of accelerator and ultra-high energy cosmic ray data. PoS ICRC2015, 418 (2016).
Petrov, V. A., Ryutin, R. A. & Sobol, A. E. LHC as pi p and pi pi collider. Eur. Phys. J. C 65, 637–647 (2010).
Ryutin, R. A., Petrov, V. A. & Sobol, A. E. Towards extraction of π+p and π+π+ cross-sections from charge exchange processes at the LHC. Eur. Phys. J. C 71, 1667 (2011).
Maurin, D. et al. Precision cross-sections for advancing cosmic-ray physics and other applications: a comprehensive programme for the next decade. Phys. Rep. 1161, 1–81 (2026).
Bass, S. A. et al. Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255–369 (1998).
Bierlich, C. et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. SciPost Phys. Codeb. 2022, 8 (2022).
Maris, I. C. et al. Influence of low energy hadronic interactions on air-shower simulations. Nucl. Phys. B Proc. Suppl. 196, 86–89 (2009).
Sjöstrand, T. & Utheim, M. Hadron interactions for arbitrary energies and species, with applications to cosmic rays. Eur. Phys. J. C 82, 21 (2022).
Nilsson-Almqvist, B. & Stenlund, E. Interactions between hadrons and nuclei: the Lund Monte Carlo, Fritiof Version 1.6. Comput. Phys. Commun. 43, 387 (1987).
Agostinelli, S. et al. GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. A 506, 250–303 (2003).
Gribov, L. V., Levin, E. M. & Ryskin, M. G. Semihard processes in QCD. Phys. Rept. 100, 1–150 (1983).
Drescher, H. J., Hladik, M., Ostapchenko, S., Pierog, T. & Werner, K. Parton based Gribov–Regge theory. Phys. Rept. 350, 93–289 (2001).
Good, M. L. & Walker, W. D. Diffraction dissociation of beam particles. Phys. Rev. 120, 1857–1860 (1960).
Riehn, F., Engel, R., Fedynitch, A., Gaisser, T. K. & Stanev, T. Hadronic interaction model SIBYLL 2.3d and extensive air showers. Phys. Rev. D 102, 063002 (2020).
Werner, K. Revealing a deep connection between factorization and saturation: new insight into modeling high-energy proton–proton and nucleus–nucleus scattering in the EPOS4 framework. Phys. Rev. C 108, 064903 (2023).
Pierog, T. & Werner, K. EPOS LHC-R: up-to-date hadronic model for EAS simulations. PoS ICRC2023, 230 (2023).
Ostapchenko, S. QGSJET-III model of high energy hadronic interactions: II. Particle production and extensive air shower characteristics. Phys. Rev. D 109, 094019 (2024).
Glauber, R. J. & Matthiae, G. High-energy scattering of protons by nuclei. Nucl. Phys. B 21, 135–157 (1970).
Engel, J., Gaisser, T. K., Stanev, T. & Lipari, P. Nucleus–nucleus collisions and interpretation of cosmic ray cascades. Phys. Rev. D 46, 5013–5025 (1992).
Bierlich, C., Gustafson, G., Lönnblad, L. & Shah, H. The Angantyr model for heavy-ion collisions in PYTHIA8. J. High Energy Phys. 10, 134 (2018).
Reininghaus, M. Air showers and hadronic interactions with CORSIKA 8. SciPost Phys. Proc. 15, 019 (2024).
Eskola, K. J., Paukkunen, H. & Salgado, C. A. EPS09: a new generation of NLO and LO nuclear parton distribution functions. J. High Energy Phys. 04, 065 (2009).
Eskola, K. J., Paakkinen, P., Paukkunen, H. & Salgado, C. A. EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. C 77, 163 (2017).
Andersson, B., Gustafson, G., Ingelman, G. & Sjostrand, T. Parton fragmentation and string dynamics. Phys. Rep. 97, 31–145 (1983).
Christiansen, J. R. & Skands, P. Z. String formation beyond leading colour. J. High Energy Phys. 08, 003 (2015).
Bierlich, C., Gustafson, G., Lönnblad, L. & Tarasov, A. Effects of overlapping strings in pp collisions. J. High Energy Phys. 03, 148 (2015).
Bierlich, C., Gustafson, G. & Lönnblad, L. Collectivity without plasma in hadronic collisions. Phys. Lett. B. 779, 58–63 (2018).
Ilten, P. & Utheim, M. Forming molecular states with hadronic rescattering. Eur. Phys. J. A 58, 1 (2022).
Wang, X.-N. & Gyulassy, M. HIJING: a Monte Carlo model for multiple jet production in pp, pA and AA collisions. Phys. Rev. D 44, 3501–3516 (1991).
Deng, W.-T., Wang, X.-N. & Xu, R. Hadron production in p+p, p+Pb, and Pb+Pb collisions with the HIJING 2.0 model at energies available at the CERN Large Hadron Collider. Phys. Rev. C 83, 014915 (2011).
Kalmykov, N. N., Khristiansen, G. B., Ostapchenko, S. S. & Pavlov, A. I. The predictions of quark–gluon string model and the data of air showers at ultra high energies. Int. Cosmic Ray Conf. 1, 123 (1995).
Pyras, L., Glaser, C., Hallmann, S. & Nelles, A. Atmospheric muons at PeV energies in radio neutrino detectors. J. Cosmol. Astropart. Phys. 10, 043 (2023).
Ulrich, R., Pierog, T. & Baus, C. Cosmic Ray Monte Carlo Package, CRMC (2021).
Dembinski, H., Fedynitch, A. & Prosekin, A. Chromo: an event generator frontend for particle and astroparticle physics. PoS ICRC2023, 189 (2023).
Aartsen, M. G. et al. The IceCube Neutrino Observatory: instrumentation and online systems. J. Instrum. 12, P03012 (2017).
Koehne, J. H. et al. PROPOSAL: a tool for propagation of charged leptons. Comput. Phys. Commun. 184, 2070–2090 (2013).
Ferrari, A., Sala, P. R., Fasso, A. & Ranft, J. FLUKA: a multi-particle transport code (Program Version 2005) (2005).
Abreu, P. et al. Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory. J. Instrum. 8, P04009 (2013).
Shibata, T. et al. Absolute energy calibration of the telescope array fluorescence detector with an electron linear accelerator. EPJ Web Conf. 53, 10004 (2013).
Keilhauer, B. The Balloon-the-Shower programme of the Pierre Auger Observatory. Astrophys. Space Sci. Trans. 6, 27–30 (2010).
Abreu, P. et al. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS). Astropart. Phys. 35, 591–607 (2012).
Heck, D., Knapp, J., Capdevielle, J. N., Schatz, G. & Thouw, T. CORSIKA: a Monte Carlo code to simulate extensive air showers. https://doi.org/10.5445/IR/270043064 (1998).
Sciutto, S. J. AIRES: a system for air shower simulations. Preprint at https://arxiv.org/abs/astro-ph/9911331 (1999).
Alves Batista, R. et al. CRPropa 3.2 — an advanced framework for high-energy particle propagation in extragalactic and galactic spaces. J. Cosmol. Astropart. Phys. 09, 035 (2022).
Hillas, A. M. Shower simulation: lessons from MOCCA. Nucl. Phys. B Proc. Suppl. 52, 29–42 (1997).
Bergmann, T. et al. One-dimensional hybrid approach to extensive air shower simulation. Astropart. Phys. 26, 420–432 (2007).
Kozynets, T., Fedynitch, A. & Koskinen, D. J. Atmospheric lepton fluxes via two-dimensional matrix cascade equations. Phys. Rev. D 108, 103040 (2023).
Gaisser, T. K., Engel, R. & Resconi, E. Cosmic Rays and Particle Physics 2nd edn (Cambridge Univ. Press, 2016).
Ortiz, J. A., Medina Tanco, G. A. & de Souza, V. Longitudinal development of extensive air showers: hybrid code SENECA and full Monte Carlo. Astropart. Phys. 23, 463–476 (2005).
Ulrich, R., Engel, R. & Unger, M. Hadronic multiparticle production at ultra-high energies and extensive air showers. Phys. Rev. D 83, 054026 (2011).
Baur, S. et al. Core–corona effect in hadron collisions and muon production in air showers. Phys. Rev. D 107, 094031 (2023).
Bierlich, C. et al. Reweighting Monte Carlo predictions and automated fragmentation variations in Pythia 8. SciPost Phys. 16, 134 (2024).
Pierog, T., Karpenko, I., Katzy, J. M., Yatsenko, E. & Werner, K. EPOS LHC: test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C 92, 034906 (2015).
Bailey, S., Cridge, T., Harland-Lang, L. A., Martin, A. D. & Thorne, R. S. Parton distributions from LHC, HERA, Tevatron and fixed target data: MSHT20 PDFs. Eur. Phys. J. C 81, 341 (2021).
Abdul Khalek, R. et al. Science requirements and detector concepts for the electron-ion collider: EIC Yellow Report. Nucl. Phys. A 1026, 122447 (2022).
Benedikt, M. et al. Future Circular Collider Feasibility Study Report: Volume 1, Physics, Experiments, Detectors, Technical Report. https://cds.cern.ch/record/2928193 (CERN, 2025).
Abgrall, N. et al. NA61/SHINE facility at the CERN SPS: beams and detector system. J. Instrum. 9, P06005 (2014).
Aad, G. et al. The ATLAS experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008).
Chatrchyan, S. et al. The CMS experiment at the CERN LHC. J. Instrum. 3, S08004 (2008).
Aamodt, K. et al. The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (2008).
Alves, A. A. Jr et al. The LHCb detector at the LHC. J. Instrum. 3, S08005 (2008).
The LHCb Collaboration. Precision luminosity measurements at LHCb. J. Instrum. 9, P12005 (2014).
LHCb SMOG Upgrade, Technical Report. https://cds.cern.ch/record/2673690 (CERN, 2019).
Anelli, G. et al. The TOTEM experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08007 (2008).
Chatrchyan, S. et al. Measurement of pseudorapidity distributions of charged particles in proton–proton collisions at \(\sqrt{s}\) = 8 TeV by the CMS and TOTEM experiments. Eur. Phys. J. C 74, 3053 (2014).
Sirunyan, A. M. et al. Measurement of the average very forward energy as a function of the track multiplicity at central pseudorapidities in proton–proton collisions at \(\sqrt{s}=13\,{\rm{TeV}}\). Eur. Phys. J. C 79, 893 (2019).
Adriani, O. et al. The LHCf detector at the CERN Large Hadron Collider. J. Instrum. 3, S08006 (2008).
Abreu, H. et al. The FASER detector. J. Instrum. 19, P05066 (2024).
Adriani, O. et al. Measurement of forward photon production cross-section in proton–proton collisions at \(\sqrt{s}\) = 13 TeV with the LHCf detector. Phys. Lett. B 780, 233–239 (2018).
Adriani, O. et al. Measurement of very forward neutron energy spectra for 7 TeV proton–proton collisions at the Large Hadron Collider. Phys. Lett. B 750, 360–366 (2015).
Adriani, O. et al. Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector. Phys. Rev. D 94, 032007 (2016).
Mammen Abraham, R. et al. First measurement of the muon neutrino interaction cross section and flux as a function of energy at the LHC with FASER. Phys. Rev. Lett. 134, 211801 (2025).
CERN. For one day only LHC collides xenon beams. https://home.cern/news/news/accelerators/one-day-only-lhc-collides-xenon-beams (2017).
CERN. First-ever collisions of oxygen at the LHC. https://home.web.cern.ch/news/news/accelerators/first-ever-collisions-oxygen-lhc (2025).
Brewer, J., Mazeliauskas, A. & van der Schee, W. Opportunities of OO and pO collisions at the LHC. In Opportunities of OO and pO collisions at the LHC. Preprint at https://arxiv.org/abs/2103.01939 (2021).
Anchordoqui, L. A. et al. The forward physics facility: sites, experiments, and physics potential. Phys. Rep. 968, 1–50 (2022).
Antoni, T. et al. Electron, muon, and hadron lateral distributions measured in air-showers by the KASCADE experiment. Astropart. Phys. 14, 245–260 (2001).
Cazon, L., Vazquez, R. A., Watson, A. A. & Zas, E. Time structure of muonic showers. Astropart. Phys. 21, 71–86 (2004).
Abreu, P. et al. Measurement of the proton–air cross-section at \(\sqrt{s}=57\) TeV with the Pierre Auger Observatory. Phys. Rev. Lett. 109, 062002 (2012).
Aab, A. et al. Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events. Phys. Rev. D 91, 032003 (2015).
Aab, A. et al. Measurement of the fluctuations in the number of muons in extensive air showers with the Pierre Auger Observatory. Phys. Rev. Lett. 126, 152002 (2021).
Abbasi, R. et al. Improved characterization of the astrophysical muon–neutrino flux with 9.5 years of IceCube Data. Astrophys. J. 928, 50 (2022).
Dembinski, H. P. et al. Report on tests and measurements of hadronic interaction properties with air showers. EPJ Web Conf. 210, 02004 (2019).
Cazon, L. Working group report on the combined analysis of muon density measurements from eight air shower experiments. PoS ICRC2019, 214 (2020).
Soldin, D. Update on the combined analysis of muon measurements from nine air shower experiments. PoS ICRC2021, 349 (2021).
Arteaga Velazquez, J. C. A report by the WHISP working group on the combined analysis of muon data at cosmic-ray energies above 1 PeV. PoS ICRC2023, 466 (2023).
Aab, A. et al. Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth. Phys. Rev. D 90, 012012 (2014).
Ostapchenko, S. & Sigl, G. On the model uncertainties for the predicted muon content of extensive air showers. Astropart. Phys. 163, 103004 (2024).
Riehn, F., Engel, R. & Fedynitch, A. SIBYLL⋆: ad-hoc modifications for an improved description of muon data in extensive air showers. PoS ICRC2023, 429 (2023).
Manshanden, J., Sigl, G. & Garzelli, M. V. Modeling strangeness enhancements to resolve the muon excess in cosmic ray extensive air shower data. J. Cosmol. Astropart. Phys. 02, 017 (2023).
Anchordoqui, L. A., Goldberg, H. & Weiler, T. J. Strange fireball as an explanation of the muon excess in Auger data. Phys. Rev. D 95, 063005 (2017).
Maguire, E., Heinrich, L. & Watt, G. HEPData: a repository for high energy physics data. J. Phys. Conf. Ser. 898, 102006 (2017).
Maurin, D. et al. A cosmic-ray database update: CRDB v4.1. Eur. Phys. J. C 83, 971 (2023).
IceCube Collaboration. IceCube Data Release. https://icecube.wisc.edu/science/data-releases/ (2025).
Haungs, A. et al. The KASCADE Cosmic-ray Data Centre KCDC: granting open access to astroparticle physics research data. Eur. Phys. J. C 78, 741 (2018).
Abdul Halim, A. et al. The Pierre Auger Observatory open data. Eur. Phys. J. C 85, 70 (2025).
Ostapchenko, S. QGSJET-III model of high energy hadronic interactions: the formalism. Phys. Rev. D 109, 034002 (2024).
Bierlich, C. et al. Robust independent validation of experiment and theory: RIVET version 3. SciPost Phys. 8, 026 (2020).
Dobbs, M. & Hansen, J. B. The HepMC C++ Monte Carlo event record for high energy physics. Comput. Phys. Commun. 134, 41–46 (2001).
Skands, P., Carrazza, S. & Rojo, J. Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74, 3024 (2014).
Karneyeu, A., Mijovic, L., Prestel, S. & Skands, P. Z. MCPLOTS: a particle physics resource based on volunteer computing. Eur. Phys. J. C 74, 2714 (2014).
Korneeva, N., Karneyeu, A. & Skands, P. Event-generator validation with MCPLOTS and LHC@home. Eur. Phys. J. Plus 139, 653 (2024).
Lhc@home. https://lhcathome.cern.ch/lhcathome/index.php (2025).
Acampora, G. et al. SND@LHC: the scattering and neutrino detector at the LHC. J. Instrum. 19, P05067 (2024).
Fieg, M., Kling, F., Schulz, H. & Sjöstrand, T. Tuning Pythia for forward physics experiments. Phys. Rev. D 109, 016010 (2024).
Krishnamoorthy, M. et al. Apprentice for event generator tuning. EPJ Web Conf. 251, 03060 (2021).
Gaudu, C. Pythia 8 and air shower simulations: a tuning perspective. In 22nd International Symposium on Very High Energy Cosmic Ray Interactions. Preprint at https://arxiv.org/abs/2411.00111 (2024).
Windau, M., Gaudu, C., Kampert, K.-H. & Kröninger, K. Improving air shower simulations by tuning Pythia 8/Angantyr with accelerator data. PoS ICRC2025, 438 (2025).
Engel, R. et al. Towards a next generation of CORSIKA: a framework for the simulation of particle cascades in astroparticle physics. Comput. Softw. Big Sci. 3, 2 (2019).
La Cagnina, S., Kröninger, K., Kluth, S. & Verbytskyi, A. A Bayesian tune of the Herwig Monte Carlo event generator. J. Instrum. 18, P10033 (2023).
Schulz, O. et al. BAT.jl: a Julia-based tool for Bayesian inference. SN Comput. Sci. 2, 1–17 (2021).
Dembinski, H. P. et al. Data-driven model of the cosmic-ray flux and mass composition from 10 GeV to 1011 GeV. PoS ICRC2017, 533 (2018).
Pierog, T. & Werner, K. EPOS.LHC-R: a global approach to solve the muon puzzle. PoS ICRC2025, 358 (2025).
Adhikary, H. et al. Measurement of hadron production in π–C interactions at 158 and 350 GeV/c with NA61/SHINE at the CERN SPS. Phys. Rev. D 107, 062004 (2023).
Acknowledgements
This paper is a comprehensive overview of work that has been advanced with a collaboration of experts during the workshop ‘Tuning of hadronic interaction models’ (https://indico.uni-wuppertal.de/event/284/) at the Bergische Universität Wuppertal in January 2024. The international workshop was organized as part of the Collaborative Research Center SFB1491, Cosmic Interacting Matters — From Source to Signal. The authors acknowledge the support of the workshop and the related research by many of the workshop participants and authors of this paper by SFB1491, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under project no. 445052434. J.A. acknowledges additional support from the Heisenberg Programme of DFG (German Research Foundation) under project no. AL 1639/5-1 and from the Bundesministerium für Bildung und Forschung (BMBF, Federal Ministry of Education and Research) under grant no. 05H21PECL1 within ErUM-FSP T04. H.D. acknowledges funding from the DFG under project no. 449728698. K.-H.K. acknowledges additional support from the BMBF under grant nos. 05A20PX1 and 05A23PX1 and from DFG under project no. 445990517. G.S. acknowledges support from the DFG under Germany’s Excellence Strategy — EXC 2121 Quantum Universe — 390833306 and from the BMBF under grants 05A20GU2 and 05A23GU3. N.K. acknowledges support from the Monash Warwick Alliance as part of the Monash Warwick Alliance in Particle Physics and from the LHC Physics Centre at CERN (LPCC). S.O. acknowledges support from the DFG under project nos. 465275045 and 550225003. F.R. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 101065027. T.S. has been supported by the Swedish Research Council under contract no. 2016-05996. L.C. thanks Ministerio de Ciencia e Innovacion/Agencia Estatal de Investigacon (PID2022-140510NB-I00 and RYC2019-027017-I), Xunta de Galicia (CIGUS Network of Research Centers, Consolidation 2021GRCGI-2033, ED431C-2021/22 and ED431F-2022/15) and the European Union (ERDF). J. Blazek, J. Ebr and J.V. have received funding from the following grants: CAS LQ100102401, GACR 21-02226M and MEYS CZ.02.01.01/00/22_008/0004632. P. Paakkinen acknowledges support from the Research Council of Finland (projects 330448 and 331545) and as a part of the Center of Excellence in Quark Matter of the Research Council of Finland (project 364194). R.C. acknowledges support from the Fundação para a Ciência e a Tecnologia (FCT), Portugal, under project https://doi.org/10.54499/2024.06879.CERN. The work of M.V.G. has been supported in part by the DFG through the Research Unit FOR 2926 ‘Next generation pQCD for hadron structure: preparing for the EIC’, project no. 40824754. A.F. and A.P. acknowledge support from Academia Sinica (grant no. AS-GCS-113-M04).
Author information
Authors and Affiliations
Contributions
All authors have contributed to the scientific content and writing of the manuscript. Coordination during the writing process and revisions was done by J.A., H.D., C.G., K.-H.K. and F.R.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Andrea Valassi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Albrecht, J., Becker Tjus, J., Behling, N. et al. Global tuning of hadronic interaction models with accelerator-based and astroparticle data. Nat Rev Phys 8, 98–114 (2026). https://doi.org/10.1038/s42254-025-00897-3
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00897-3


