Abstract
Quantum batteries harness the principles of quantum mechanics to transfer, store and release energy within quantum systems on demand. Emerging from foundational research at the intersection of quantum physics, thermodynamics and information theory, the field of quantum batteries introduces new principles for energy manipulation rooted in quantum mechanics. This rapidly expanding field of research spans foundational studies on the thermodynamic limits of battery performance and the potential for quantum advantage, alongside the development of theoretical models and the design of innovative architectures for experimental proof-of-principle demonstrations. In this Perspective, we aim to introduce the core concepts, survey the current theoretical and experimental landscape, and highlight opportunities and challenges in the pursuit of more efficient and scalable quantum energy storage devices.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Vincent, C. A. & Scrosati, B. Modern Batteries 2nd edn (Butterworth-Heinemann, 1997).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
Benenti, G., Casati, G., Rossini, D. & Strini, G. Principles of Quantum Computation and Information (World Scientific, 2018).
Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).
Portmann, C. & Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 94, 025008 (2022).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Alicki, R. & Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).
Bhattacharjee, S. & Dutta, A. Quantum thermal machines and batteries. Eur. Phys. J. B 94, 239 (2021).
Quach, J. Q., Cerullo, G. & Virgili, T. Quantum batteries: the future of energy storage? Joule 7, 2195–2200 (2023).
Campaioli, F., Gherardini, S., Quach, J. Q., Polini, M. & Andolina, G. M. Colloquium: quantum batteries. Rev. Mod. Phys. 96, 031001 (2024).
Binder, F. C., Vinjanampathy, S., Modi, K. & Goold, J. Quantacell: powerful charging of quantum batteries. N. J. Phys. 17, 075015 (2015).
Juliá-Farré, S., Salamon, T., Riera, A., Bera, N. M. & Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2, 023113 (2020).
Friis, N. & Huber, M. Precision and work fluctuations in Gaussian battery charging. Quantum 2, 61 (2018).
Fisher, R. A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922).
Barndorff-Nielsen, O. E. & Gill, R. D. Fisher information in quantum statistics. J. Phys. A 33, 4481–4490 (2000).
Andolina, G. M., Keck, M., Mari, A., Giovannetti, V. & Polini, M. Quantum versus classical many-body batteries. Phys. Rev. B 99, 205437 (2019).
Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 4, 555–563 (1935).
Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).
Campaioli, F. et al. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017).
Gyhm, J.-Y., Šafránek, D. & Rosa, D. Quantum charging advantage cannot be extensive without global operations. Phys. Rev. Lett. 128, 140501 (2022).
Rinaldi, D., Filip, R., Gerace, D. & Guarnieri, G. Reliable quantum advantage in quantum battery charging. Phys. Rev. A 112, 012205 (2024).
Polo, B. & Centrone, F. Non-Gaussian enhancement of precision in quantum batteries. Preprint at https://arxiv.org/abs/2505.24604 (2025).
Deffner, S. & Campbell, S. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017).
Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565–571 (2004).
Andolina, G. M. et al. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019).
Salvia, R., De Palma, G. & Giovannetti, V. Optimal local work extraction from bipartite quantum systems in the presence of Hamiltonian couplings. Phys. Rev. A 107, 012405 (2023).
Castellano, R., Farina, D., Giovannetti, V. & Acin, A. Extended local ergotropy. Phys. Rev. Lett. 133, 150402 (2024).
Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).
Benenti, G., Casati, G., Saito, K. & Whitney, R. S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017).
Deffner, S. & Campbell, S. Quantum Thermodynamics (Morgan & Claypool, 2019).
Barra, F., Hovhannisyan, K. V. & Imparato, A. Quantum batteries at the verge of a phase transition. N. J. Phys. 24, 015003 (2022).
Aguado, R., Citro, R., Lewenstein, M. & Stern, M. New Trends and Platforms for Quantum Technologies (Springer, 2024).
Dicke, H. R. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).
Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol. 2, 1800043 (2019).
Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2010).
Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).
Ferraro, D., Campisi, M., Andolina, G. M., Pellegrini, V. & Polini, M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018).
Yang, D.-L., Yang, F.-M. & Dou, F.-Q. Three-level Dicke quantum battery. Phys. Rev. B 109, 235432 (2024).
Crescente, A., Carrega, M., Sassetti, M. & Ferraro, D. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B 102, 245407 (2020).
Wang, L., Liu, S.-Q., Wu, F.-L., Fan, H. & Liu, S.-Y. Deep strong charging in a multiphoton anisotropic Dicke quantum battery. Phys. Rev. A 110, 042419 (2024).
Gemme, G., Andolina, G. M., Pellegrino, F. M. D., Sassetti, M. & Ferraro, D. Off-resonant Dicke quantum battery: charging by virtual photons. Batteries 9, 197 (2023).
Franchini, F. An Introduction to Integrable Techniques for One Dimensional Quantum Systems (Springer, 2017).
Formicola, F. et al. Local ergotropy dynamically witnesses many-body localized phases. Phys. Rev. Res. 7, 043086 (2025).
Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).
Weimer, H., Muller, M., Lesanovsky, I., Zoller, P. & Buchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).
Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).
Le, T. P., Levinsen, J., Modi, K., Parish, M. M. & Pollock, F. A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 97, 022106 (2018).
Grazi, R., Shaikh, D. S., Sassetti, M., Traverso Ziani, N. & Ferraro, D. Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery. Phys. Rev. Lett. 133, 197001 (2024).
Rossini, D., Andolina, G. M. & Polini, M. Many-body localized quantum batteries. Phys. Rev. B 100, 115142 (2019).
Ghosh, S., Chanda, T. & Sen De, A. Enhancement in the performance of a quantum battery by ordered and disordered interactions. Phys. Rev. A 101, 032115 (2020).
Arjmandi, M. B., Mohammadi, H. & Santos, A. C. Enhancing self-discharging process with disordered quantum batteries. Phys. Rev. E 105, 054115 (2022).
Catalano, A., Giampaolo, S., Morsch, O., Giovannetti, V. & Franchini, F. Frustrating quantum batteries. PRX Quantum 5, 030319 (2024).
Lu, Z.-G., Tian, G., Lu, X.-Y. & Shang, C. Topological quantum batteries. Phys. Rev. Lett. 134, 180401 (2024).
Rossini, D., Andolina, G. M., Rosa, D., Carrega, M. & Polini, M. Quantum advantage in the charging process of Sachdev-Ye-Kitaev batteries. Phys. Rev. Lett. 125, 236402 (2020).
Rosa, D., Rossini, D., Andolina, G. M., Polini, M. & Carrega, M. Ultra-stable charging of fast-scrambling SYK quantum batteries. J. High. Energy Phys. 2020, 67 (2020).
Camposeo, A. et al. Quantum batteries: a materials science perspective. Adv. Mater. 37, 2415073 (2025).
Ferraro, A., Olivares, S. & Paris, M. G. A. Gaussian states in continuous variable quantum information. Preprint at https://arxiv.org/abs/quant-ph/0503237 (2005).
Weiss, U. Quantum Dissipative Systems 5th edn (World Scientific, 2021).
Hovhannisyan, K. V., Barra, F. & Imparato, A. Charging assisted by thermalization. Phys. Rev. Res. 2, 033413 (2020).
Cavaliere, F., Gemme, G., Benenti, G., Ferraro, D. & Sassetti, M. Dynamical blockade of a reservoir for optimal performances of a quantum battery. Commun. Phys. 8, 76 (2025).
Andolina, G. M. et al. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 98, 205423 (2018).
Downing, C. A. & Ukhtary, M. S. A quantum battery with quadratic driving. Commun. Phys. 6, 322 (2023).
Konar, T. K. et al. Multimode advantage in continuous-variable quantum batteries. Phys. Rev. A 110, 022226 (2024).
Andolina, G. M., Stanzione, V., Giovannetti, V. & Polini, M. Genuine quantum advantage in anharmonic bosonic quantum batteries. Phys. Rev. Lett. 134, 240430 (2025).
Quach, J. Q. et al. Superabsorption in an organic microcavity: toward a quantum battery. Sci. Adv. 8, eabk3160 (2022).
Boehme, S. C. et al. Single-photon superabsorption in CsPbBr3 perovskite quantum dots. Nat. Photon. 19, 864–870 (2025).
Hymas, K. et al. Experimental demonstration of a scalable room-temperature quantum battery. Preprint at https://arxiv.org/abs/2501.16541 (2025).
Tibben, D. J. et al. Extending the self-discharge time of Dicke quantum batteries using molecular triplets. PRX Energy 4, 023012 (2025).
Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).
Eckhardt, C. J. et al. Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity. Commun. Phys. 5, 122 (2022).
Joshi, J. & Mahesh, T. S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 106, 042601 (2022).
Cruz, C., Anka, M. F., Reis, M. S., Bachelard, R. & Santos, A. C. Quantum battery based on quantum discord at room temperature. Quantum Sci. Technol. 7, 025020 (2022).
Maillette de Buy Wenniger, I. et al. Experimental analysis of energy transfers between a quantum emitter and light fields. Phys. Rev. Lett. 131, 260401 (2023).
Hu, C.-K. et al. Optimal charging of a superconducting quantum battery. Quantum Sci. Technol. 7, 045018 (2022).
Li, L. et al. Stable and efficient charging of superconducting C-shunt flux quantum batteries. Preprint at https://arxiv.org/abs/2504.07464 (2025).
Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).
Gemme, G., Grossi, M., Ferraro, D., Vallecorsa, S. & Sassetti, M. IBM quantum platforms: a quantum battery perspective. Batteries 8, 43 (2022).
Morrone, D., Rossi, M. A. C., Smirne, A. & Genoni, M. G. Charging a quantum battery in a non-Markovian environment: a collisional model approach. Quantum Sci. Technol. 8, 035007 (2023).
Gemme, G., Grossi, M., Vallecorsa, S., Sassetti, M. & Ferraro, D. Qutrit quantum battery: comparing different charging protocols. Phys. Rev. Res. 6, 023091 (2024).
Razzoli, L. et al. Cyclic solid-state quantum battery: thermodynamic characterization and quantum hardware simulation. Quantum Sci. Technol. 10, 015064 (2025).
Donelli, B., Gherardini, S., Marino, R., Campaioli, F. & Buffoni, L. Charging a quantum spin network with superextensive precision. Phys. Rev. E 111, L062102 (2025).
Alexander, T. et al. Qiskit pulse: programming quantum computers through the cloud with pulse. Quantum Sci. Technol. 5, 044006 (2020).
Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).
Vacchini, B. Open Quantum Systems (Springer, 2024).
Farina, D., Andolina, G. M., Mari, A., Polini, M. & Giovannetti, V. Charger-mediated energy transfer for quantum batteries: an open-system approach. Phys. Rev. B 99, 035421 (2019).
Caravelli, F., Yan, B., García-Pintos, L. P. & Hamma, A. Energy storage and coherence in closed and open quantum batteries. Quantum 5, 505 (2021).
Zakavati, S., Tabesh, F. T. & Salimi, S. Bounds on charging power of open quantum batteries. Phys. Rev. E 104, 054117 (2021).
Pirmoradian, F. & Mølmer, K. Aging of a quantum battery. Phys. Rev. A 100, 043833 (2019).
Quach, J. Q. & Munro, W. J. Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl. 14, 024092 (2020).
Carrasco, J., Maze, J. R., Hermann-Avigliano, C. & Barra, F. Collective enhancement in dissipative quantum batteries. Phys. Rev. E 105, 064119 (2022).
Canzio, A., Cavina, V., Polini, M. & Giovannetti, V. Single-atom dissipation and dephasing in Dicke and Tavis-Cummings quantum batteries. Phys. Rev. A 111, 022222 (2025).
Carrega, M., Crescente, A., Ferraro, D. & Sassetti, M. Dissipative dynamics of an open quantum battery. N. J. Phys. 22, 083085 (2020).
Yadav, M., Tiwari, D. & Banerjee, S. (Thermo-)dynamics of the spin-boson model in the weak coupling regime: application as a quantum battery. Preprint at https://arxiv.org/abs/2504.15712 (2025).
Rivas, A., Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014).
Breuer, H. P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).
Einsiedler, S., Ketterer, A. & Breuer, H.-P. Non-Markovianity of quantum Brownian motion. Phys. Rev. A 102, 022228 (2020).
Wiedmann, M., Stockburger, J. T. & Ankerhold, J. Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control. N. J. Phys. 22, 033007 (2020).
Cavaliere, F. et al. Dynamical heat engines with non-Markovian reservoirs. Phys. Rev. Res. 4, 033233 (2022).
Liu, J., Segal, D. & Hanna, G. Loss-free excitonic quantum battery. J. Phys. Chem. C 123, 18303–18314 (2019).
Yao, Y. & Shao, X. Q. Stable charging of a Rydberg quantum battery in an open system. Phys. Rev. E 104, 044116 (2021).
Xu, K., Zhu, H.-J., Zhu, H., Zhang, G.-F. & Liu, W.-M. Charging and self-discharging process of a quantum battery in composite environments. Front. Phys. 18, 31301 (2023).
Dou, F.-Q. & Yang, F.-M. Superconducting transmon qubit-resonator quantum battery. Phys. Rev. A 107, 023725 (2023).
Song, W.-L., Wang, J.-L., Zhou, B., Yang, W.-L. & An, J.-H. Self-discharging mitigated quantum battery. Phys. Rev. Lett. 135, 020405 (2025).
Behzadi, N. & Kasani, H. Mechanism of controlling robust and stable charging of open quantum batteries. J. Phys. A 55, 425303 (2022).
Liu, S.-Q., Wang, L., Fan, H., Wu, F.-L. & Liu, S.-Y. Better performance of quantum batteries in different environments compared to closed batteries. Phys. Rev. A 109, 042411 (2024).
Bai, S. Y. & An, J.-H. Floquet engineering to reactivate a dissipative quantum battery. Phys. Rev. A 102, 060201(R) (2020).
Tabesh, F. T., Kamin, F. H. & Salimi, S. Environment-mediated charging process of quantum batteries. Phys. Rev. A 102, 052223 (2020).
Ghosh, S., Chanda, T., Mal, S. & Sen De, A. Fast charging of a quantum battery assisted by noise. Phys. Rev. A 104, 032207 (2021).
Kamin, F. H., Tabesh, F. T., Salimi, S., Kheirandish, F. & Santos, A. C. Non-Markovian effects on charging and self-discharging process of quantum batteries. N. J. Phys. 22, 083007 (2020).
Bhanja, G., Tiwari, D. & Banerjee, S. Impact of non-Markovian quantum Brownian motion on quantum batteries. Phys. Rev. A 109, 012224 (2024).
Feliù, D. & Barra, F. System-bath correlations and finite-time operation enhance the efficiency of a dissipative quantum battery. Quantum Sci. Technol. 9, 035043 (2024).
Ahmadi, B. & Mazurek, P. Nonreciprocal quantum batteries. Phys. Rev. Lett. 132, 210402 (2024).
Ahmadi, B., Mazurek, P., Barzanjeh, S. & Horodecki, P. Superoptimal charging of quantum batteries via reservoir engineering: arbitrary energy transfer unlocked. Phys. Rev. Appl. 23, 024010 (2025).
Albarelli, F., Vacchini, B. & Smirne, A. Pseudomode treatment of strong-coupling quantum thermodynamics. Quantum Sci. Technol. 10, 015041 (2024).
Xu, K., Zhu, H.-J., Zhang, G.-F. & Liu, W.-M. Enhancing the performance of an open quantum battery via environment engineering. Phys. Rev. E 104, 064143 (2021).
Song, M.-L., Li, L.-J., Song, X.-K., Ye, L. & Wang, D. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E 106, 054107 (2022).
Yu, W.-L. et al. Enhancement of charging performance of quantum battery via quantum coherence of bath. Chin. Phys. B 32, 010302 (2023).
Centrone, F., Mancino, L. & Paternostro, M. Charging batteries with quantum squeezing. Phys. Rev. A 108, 052213 (2023).
Barra, F. Dissipative charging of a quantum battery. Phys. Rev. Lett. 122, 210601 (2019).
Kockum, A. F., Miranowiez, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).
Dou, F.-Q., Lu, Y.-Q., Wang, Y.-J. & Sun, J.-A. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B 105, 115405 (2022).
Crescente, A., Ferraro, D. & Sassetti, M. Boosting energy transfer between quantum devices through spectrum engineering in the dissipative ultrastrong coupling regime. Phys. Rev. Res. 6, 023092 (2024).
Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theory Appl. 45, 897–934 (2017).
Koch, C. P. et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 9, 19 (2022).
Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).
Rodríguez, C., Rosa, D. & Olle, J. Artificial intelligence discovery of a charging protocol in a micromaser quantum battery. Phys. Rev. A 108, 042618 (2023).
Erdman, P. A., Andolina, G. M., Giovannetti, V. & Noé, F. Reinforcement learning optimization of the charging of a Dicke quantum battery. Phys. Rev. Lett. 133, 243602 (2024).
Evangelakos, V., Paspalakis, E. & Stefanatos, D. Fast charging of an Ising-spin-pair quantum battery using optimal control. Phys. Rev. A 110, 052601 (2024).
Evangelakos, V., Paspalakis, E. & Stefanatos, D. Rapid charging of a two-qubit quantum battery by transverse field amplitude and phase control. Quantum Sci. Technol. 10, 035024 (2025).
Slosser, J. J., Maystre, P. & Braunstein, S. L. Harmonic oscillator driven by a quantum current. Phys. Rev. Lett. 63, 934–937 (1989).
Meystre, P. & Sargent, M. Elements of Quantum Optics (Springer, 1998).
Shaghaghi, V., Singh, V., Benenti, G. & Rosa, D. Micromasers as quantum batteries. Quantum Sci. Technol. 7, 04LT01 (2022).
Villaseñor, D. et al. Classical and quantum properties of the spin-boson Dicke model: chaos, localization, and scarring. Preprint at https://arxiv.org/abs/2405.20381 (2024).
Rodríguez, R. R. et al. Optimal quantum control of charging quantum batteries. N. J. Phys. 26, 043004 (2024).
Sun, P.-Y., Zhou, H. & Dou, F.-Q. Cavity-Heisenberg spin-j chain quantum battery and reinforcement learning optimization. Preprint at https://arxiv.org/abs/2412.01442 (2024).
Zakavati, S. et al. Optimizing the charging of open quantum batteries using long short-term memory-driven reinforcement learning. Preprint at https://arxiv.org/abs/2504.19840 (2025).
Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2009).
Facchi, P. & Pascazio, S. Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A 41, 493001 (2008).
Gherardini, S., Campaioli, F., Caruso, F. & Binder, F. C. Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Res. 2, 013095 (2020).
Albarelli, F. & Genoni, M. G. A pedagogical introduction to continuously monitored quantum systems and measurement-based feedback. Phys. Lett. A 494, 129260 (2024).
Mitchison, M. T., Goold, J. & Prior, J. Charging a quantum battery with linear feedback control. Quantum 5, 500 (2021).
Yao, Y. & Shao, X. Q. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E 106, 014138 (2022).
de Oliveira Junior, A., Bohr Brask, J. & Chaves, R. A friendly guide to exorcising Maxwell’s demon. PRX Quantum 6, 030201 (2025).
Francica, G., Goold, J., Plastina, F. & Paternostro, M. Daemonic ergotropy: enhanced work extraction from quantum correlations. npj Quantum Inf. 3, 12 (2017).
Manzano, G., Plastina, F. & Zambrini, R. Optimal work extraction and thermodynamics of quantum measurements and correlations. Phys. Rev. Lett. 121, 120602 (2018).
Morrone, D., Rossi, M. A. C. & Genoni, M. G. Daemonic ergotropy in continuously monitored open quantum batteries. Phys. Rev. Appl. 20, 044073 (2023).
Hua, K. H., Serafini, A. & Genoni, M. G. Daemonic ergotropy of Gaussian quantum states and the role of measurement-induced purification via general-dyne detection. Preprint at https://arxiv.org/abs/2506.22288 (2025).
Cottet, N. et al. Observing a quantum Maxwell demon at work. Proc. Natl Acad. Sci. USA 114, 7561–7564 (2017).
Elyasi, S. N., Rossi, M. A. C. & Genoni, M. G. Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer. Quantum Sci. Technol. 10, 025017 (2025).
Stahl, A. et al. Demonstration of energy extraction gain from non-classical correlations. Preprint at https://arxiv.org/abs/2404.14838 (2024).
Chiribella, G., Yang, Y. & Renner, R. Fundamental energy requirement of reversible quantum operations. Phys. Rev. X 11, 021014 (2021).
Cioni, F., Menta, R., Aiudi, R., Polini, M. & Giovannetti, V. Conveyor-belt superconducting quantum computer. Preprint at https://arxiv.org/abs/2412.11782 (2024).
Kurman, Y., Hymas, K., Fedorov, A., Munro, W. J. & Quach, J. Q. Quantum computation with quantum batteries. Preprint at https://arxiv.org/abs/2503.23610 (2025).
Faist, P. & Renner, R. Fundamental work cost of quantum processes. Phys. Rev. X 8, 021011 (2018).
Monsel, J., Fellous-Asiani, M., Huard, B. & Auffèves, A. The energetic cost of work extraction. Phys. Rev. Lett. 124, 130601 (2020).
Auffèves, A. Quantum technologies need a quantum energy initiative. PRX Quantum 3, 020101 (2022).
Hymas, K. et al. Superradiant organic light-emitting diodes. Preprint at https://arxiv.org/abs/2507.14934 (2025).
Cavaliere, F., Ferraro, D., Carrega, M., Benenti, G. & Sassetti, M. Quantum advantage bounds for a multipartite Gaussian battery. Preprint at https://arxiv.org/abs/2510.24162 (2025).
Roulet, A., Nimmrichter, S., Arrazola, J. M., Seah, S. & Scarani, V. Autonomous rotor heat engine. Phys. Rev. A 95, 062131 (2017).
Van Horne, N. et al. Single-atom energy-conversion device with a quantum load. npj Quantum Inf. 6, 37 (2020).
Gauthameshwar, S., Jaseem, N. & Poletti, D. Emergence of thermodynamic functioning regimes from finite coupling between a quantum thermal machine and a load. Preprint at https://arxiv.org/abs/2506.01852 (2025).
Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009).
Minagawa, S., Mohammady, M. H., Sakai, K., Kohtaro, K. & Buscemi, F. Universal validity of the second law of information thermodynamics. npj Quantum Inf. 11, 18 (2025).
Callen, H. B. Thermodynamics and an Introduction to Thermostatics 2nd edn (Wiley, 1985).
Lenard, A. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575–586 (1978).
Pusz, W. & Woronowicz, S. L. Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978).
Feynman, R. P. & Vernon, F. L. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963).
Strasberg, P., Schaller, G., Lambert, L. & Brandes, T. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. N. J. Phys. 18, 073007 (2016).
Carrega, M., Solinas, P., Sassetti, M. & Weiss, U. Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116, 240403 (2016).
Brenes, M. et al. Tensor-network method to simulate strongly interacting quantum thermal machines. Phys. Rev. X 10, 031040 (2020).
Tanimura, J. Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn 75, 082001 (2006).
De Filippis, G. et al. Signatures of dissipation driven quantum phase transition in Rabi model. Phys. Rev. Lett. 130, 210404 (2023).
Carrega, M. et al. Engineering dynamical couplings for quantum thermodynamic tasks. PRX Quantum 3, 010323 (2022).
Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).
Ciccarello, F., Lorenzo, S., Giovannetti, V. & Palma, G. M. Quantum collision models: open system dynamics from repeated interactions. Phys. Rep. 954, 1–70 (2022).
Seah, S., Perarnau-Llobet, M., Haack, G., Brunner, N. & Nimmrichter, S. Quantum speed-up in collisional battery charging. Phys. Rev. Lett. 127, 100601 (2021).
Salvia, R., Perarnau-Llobet, M., Haack, G., Brunner, N. & Nimmrichter, S. Quantum advantage in charging cavity and spin batteries by repeated interactions. Phys. Rev. Res. 5, 013155 (2023).
Shaghaghi, V., Singh, V., Carrega, M., Rosa, D. & Benenti, G. Lossy micromaser battery: almost pure states in the Jaynes–Cummings regime. Entropy 25, 430 (2023).
Massa, N., Cavaliere, F. & Ferraro, D. Collisional charging of a transmon quantum battery. Batteries 11, 240 (2025).
Acknowledgements
F.C. acknowledges discussions with C. Capelli regarding the simplified exposition of the chemical reactions occurring in a classical battery. D.F. acknowledges discussions with G. Gemme, R. Grazi and N. Traverso Ziani.
Author information
Authors and Affiliations
Contributions
All authors equally contributed to the realization of this paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Clebson Cruz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ferraro, D., Cavaliere, F., Genoni, M.G. et al. Opportunities and challenges of quantum batteries. Nat Rev Phys 8, 115–127 (2026). https://doi.org/10.1038/s42254-025-00906-5
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42254-025-00906-5


