Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Opportunities and challenges of quantum batteries

Abstract

Quantum batteries harness the principles of quantum mechanics to transfer, store and release energy within quantum systems on demand. Emerging from foundational research at the intersection of quantum physics, thermodynamics and information theory, the field of quantum batteries introduces new principles for energy manipulation rooted in quantum mechanics. This rapidly expanding field of research spans foundational studies on the thermodynamic limits of battery performance and the potential for quantum advantage, alongside the development of theoretical models and the design of innovative architectures for experimental proof-of-principle demonstrations. In this Perspective, we aim to introduce the core concepts, survey the current theoretical and experimental landscape, and highlight opportunities and challenges in the pursuit of more efficient and scalable quantum energy storage devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical versus quantum batteries.
Fig. 2: Charging a quantum battery.
Fig. 3: When theory meets experimental reality.

Similar content being viewed by others

References

  1. Vincent, C. A. & Scrosati, B. Modern Batteries 2nd edn (Butterworth-Heinemann, 1997).

  2. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  3. Benenti, G., Casati, G., Rossini, D. & Strini, G. Principles of Quantum Computation and Information (World Scientific, 2018).

  4. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    Article  ADS  Google Scholar 

  5. Portmann, C. & Renner, R. Security in quantum cryptography. Rev. Mod. Phys. 94, 025008 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  6. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  7. Alicki, R. & Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).

    Article  ADS  Google Scholar 

  8. Bhattacharjee, S. & Dutta, A. Quantum thermal machines and batteries. Eur. Phys. J. B 94, 239 (2021).

    Article  ADS  Google Scholar 

  9. Quach, J. Q., Cerullo, G. & Virgili, T. Quantum batteries: the future of energy storage? Joule 7, 2195–2200 (2023).

    Article  Google Scholar 

  10. Campaioli, F., Gherardini, S., Quach, J. Q., Polini, M. & Andolina, G. M. Colloquium: quantum batteries. Rev. Mod. Phys. 96, 031001 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  11. Binder, F. C., Vinjanampathy, S., Modi, K. & Goold, J. Quantacell: powerful charging of quantum batteries. N. J. Phys. 17, 075015 (2015).

    Article  Google Scholar 

  12. Juliá-Farré, S., Salamon, T., Riera, A., Bera, N. M. & Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2, 023113 (2020).

    Article  Google Scholar 

  13. Friis, N. & Huber, M. Precision and work fluctuations in Gaussian battery charging. Quantum 2, 61 (2018).

    Article  Google Scholar 

  14. Fisher, R. A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 222, 309–368 (1922).

    Article  ADS  Google Scholar 

  15. Barndorff-Nielsen, O. E. & Gill, R. D. Fisher information in quantum statistics. J. Phys. A 33, 4481–4490 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  16. Andolina, G. M., Keck, M., Mari, A., Giovannetti, V. & Polini, M. Quantum versus classical many-body batteries. Phys. Rev. B 99, 205437 (2019).

    Article  ADS  Google Scholar 

  17. Schrödinger, E. Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 4, 555–563 (1935).

    Article  ADS  Google Scholar 

  18. Horodecki, R., Horodecki, P., Horodecki, M. & Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  19. Campaioli, F. et al. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017).

    Article  ADS  Google Scholar 

  20. Gyhm, J.-Y., Šafránek, D. & Rosa, D. Quantum charging advantage cannot be extensive without global operations. Phys. Rev. Lett. 128, 140501 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  21. Rinaldi, D., Filip, R., Gerace, D. & Guarnieri, G. Reliable quantum advantage in quantum battery charging. Phys. Rev. A 112, 012205 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  22. Polo, B. & Centrone, F. Non-Gaussian enhancement of precision in quantum batteries. Preprint at https://arxiv.org/abs/2505.24604 (2025).

  23. Deffner, S. & Campbell, S. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control. J. Phys. A 50, 453001 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  24. Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565–571 (2004).

    Article  ADS  Google Scholar 

  25. Andolina, G. M. et al. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019).

    Article  ADS  Google Scholar 

  26. Salvia, R., De Palma, G. & Giovannetti, V. Optimal local work extraction from bipartite quantum systems in the presence of Hamiltonian couplings. Phys. Rev. A 107, 012405 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  27. Castellano, R., Farina, D., Giovannetti, V. & Acin, A. Extended local ergotropy. Phys. Rev. Lett. 133, 150402 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  28. Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Contemp. Phys. 57, 545–579 (2016).

    Article  ADS  Google Scholar 

  29. Benenti, G., Casati, G., Saito, K. & Whitney, R. S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  30. Deffner, S. & Campbell, S. Quantum Thermodynamics (Morgan & Claypool, 2019).

  31. Barra, F., Hovhannisyan, K. V. & Imparato, A. Quantum batteries at the verge of a phase transition. N. J. Phys. 24, 015003 (2022).

    Article  MathSciNet  Google Scholar 

  32. Aguado, R., Citro, R., Lewenstein, M. & Stern, M. New Trends and Platforms for Quantum Technologies (Springer, 2024).

  33. Dicke, H. R. Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954).

    Article  ADS  Google Scholar 

  34. Kirton, P., Roses, M. M., Keeling, J. & Dalla Torre, E. G. Introduction to the Dicke model: from equilibrium to nonequilibrium, and vice versa. Adv. Quantum Technol. 2, 1800043 (2019).

    Article  Google Scholar 

  35. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2010).

  36. Blais, A., Grimsmo, A. L., Girvin, S. M. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  37. Ferraro, D., Campisi, M., Andolina, G. M., Pellegrini, V. & Polini, M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett. 120, 117702 (2018).

    Article  ADS  Google Scholar 

  38. Yang, D.-L., Yang, F.-M. & Dou, F.-Q. Three-level Dicke quantum battery. Phys. Rev. B 109, 235432 (2024).

    Article  ADS  Google Scholar 

  39. Crescente, A., Carrega, M., Sassetti, M. & Ferraro, D. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B 102, 245407 (2020).

    Article  ADS  Google Scholar 

  40. Wang, L., Liu, S.-Q., Wu, F.-L., Fan, H. & Liu, S.-Y. Deep strong charging in a multiphoton anisotropic Dicke quantum battery. Phys. Rev. A 110, 042419 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  41. Gemme, G., Andolina, G. M., Pellegrino, F. M. D., Sassetti, M. & Ferraro, D. Off-resonant Dicke quantum battery: charging by virtual photons. Batteries 9, 197 (2023).

    Article  Google Scholar 

  42. Franchini, F. An Introduction to Integrable Techniques for One Dimensional Quantum Systems (Springer, 2017).

  43. Formicola, F. et al. Local ergotropy dynamically witnesses many-body localized phases. Phys. Rev. Res. 7, 043086 (2025).

    Article  Google Scholar 

  44. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

  45. Weimer, H., Muller, M., Lesanovsky, I., Zoller, P. & Buchler, H. P. A Rydberg quantum simulator. Nat. Phys. 6, 382–388 (2010).

    Article  Google Scholar 

  46. Browaeys, A. & Lahaye, T. Many-body physics with individually controlled Rydberg atoms. Nat. Phys. 16, 132–142 (2020).

    Article  Google Scholar 

  47. Le, T. P., Levinsen, J., Modi, K., Parish, M. M. & Pollock, F. A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 97, 022106 (2018).

    Article  ADS  Google Scholar 

  48. Grazi, R., Shaikh, D. S., Sassetti, M., Traverso Ziani, N. & Ferraro, D. Controlling energy storage crossing quantum phase transitions in an integrable spin quantum battery. Phys. Rev. Lett. 133, 197001 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  49. Rossini, D., Andolina, G. M. & Polini, M. Many-body localized quantum batteries. Phys. Rev. B 100, 115142 (2019).

    Article  ADS  Google Scholar 

  50. Ghosh, S., Chanda, T. & Sen De, A. Enhancement in the performance of a quantum battery by ordered and disordered interactions. Phys. Rev. A 101, 032115 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  51. Arjmandi, M. B., Mohammadi, H. & Santos, A. C. Enhancing self-discharging process with disordered quantum batteries. Phys. Rev. E 105, 054115 (2022).

    Article  ADS  Google Scholar 

  52. Catalano, A., Giampaolo, S., Morsch, O., Giovannetti, V. & Franchini, F. Frustrating quantum batteries. PRX Quantum 5, 030319 (2024).

    Article  ADS  Google Scholar 

  53. Lu, Z.-G., Tian, G., Lu, X.-Y. & Shang, C. Topological quantum batteries. Phys. Rev. Lett. 134, 180401 (2024).

    Article  MathSciNet  Google Scholar 

  54. Rossini, D., Andolina, G. M., Rosa, D., Carrega, M. & Polini, M. Quantum advantage in the charging process of Sachdev-Ye-Kitaev batteries. Phys. Rev. Lett. 125, 236402 (2020).

    Article  ADS  Google Scholar 

  55. Rosa, D., Rossini, D., Andolina, G. M., Polini, M. & Carrega, M. Ultra-stable charging of fast-scrambling SYK quantum batteries. J. High. Energy Phys. 2020, 67 (2020).

    Article  MathSciNet  Google Scholar 

  56. Camposeo, A. et al. Quantum batteries: a materials science perspective. Adv. Mater. 37, 2415073 (2025).

    Article  Google Scholar 

  57. Ferraro, A., Olivares, S. & Paris, M. G. A. Gaussian states in continuous variable quantum information. Preprint at https://arxiv.org/abs/quant-ph/0503237 (2005).

  58. Weiss, U. Quantum Dissipative Systems 5th edn (World Scientific, 2021).

  59. Hovhannisyan, K. V., Barra, F. & Imparato, A. Charging assisted by thermalization. Phys. Rev. Res. 2, 033413 (2020).

    Article  Google Scholar 

  60. Cavaliere, F., Gemme, G., Benenti, G., Ferraro, D. & Sassetti, M. Dynamical blockade of a reservoir for optimal performances of a quantum battery. Commun. Phys. 8, 76 (2025).

    Article  Google Scholar 

  61. Andolina, G. M. et al. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 98, 205423 (2018).

    Article  ADS  Google Scholar 

  62. Downing, C. A. & Ukhtary, M. S. A quantum battery with quadratic driving. Commun. Phys. 6, 322 (2023).

    Article  Google Scholar 

  63. Konar, T. K. et al. Multimode advantage in continuous-variable quantum batteries. Phys. Rev. A 110, 022226 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  64. Andolina, G. M., Stanzione, V., Giovannetti, V. & Polini, M. Genuine quantum advantage in anharmonic bosonic quantum batteries. Phys. Rev. Lett. 134, 240430 (2025).

    Article  MathSciNet  Google Scholar 

  65. Quach, J. Q. et al. Superabsorption in an organic microcavity: toward a quantum battery. Sci. Adv. 8, eabk3160 (2022).

    Article  ADS  Google Scholar 

  66. Boehme, S. C. et al. Single-photon superabsorption in CsPbBr3 perovskite quantum dots. Nat. Photon. 19, 864–870 (2025).

    Article  ADS  Google Scholar 

  67. Hymas, K. et al. Experimental demonstration of a scalable room-temperature quantum battery. Preprint at https://arxiv.org/abs/2501.16541 (2025).

  68. Tibben, D. J. et al. Extending the self-discharge time of Dicke quantum batteries using molecular triplets. PRX Energy 4, 023012 (2025).

    Article  Google Scholar 

  69. Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).

    Article  ADS  Google Scholar 

  70. Eckhardt, C. J. et al. Quantum Floquet engineering with an exactly solvable tight-binding chain in a cavity. Commun. Phys. 5, 122 (2022).

    Article  Google Scholar 

  71. Joshi, J. & Mahesh, T. S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 106, 042601 (2022).

    Article  ADS  Google Scholar 

  72. Cruz, C., Anka, M. F., Reis, M. S., Bachelard, R. & Santos, A. C. Quantum battery based on quantum discord at room temperature. Quantum Sci. Technol. 7, 025020 (2022).

    Article  ADS  Google Scholar 

  73. Maillette de Buy Wenniger, I. et al. Experimental analysis of energy transfers between a quantum emitter and light fields. Phys. Rev. Lett. 131, 260401 (2023).

    Article  ADS  Google Scholar 

  74. Hu, C.-K. et al. Optimal charging of a superconducting quantum battery. Quantum Sci. Technol. 7, 045018 (2022).

    Article  ADS  Google Scholar 

  75. Li, L. et al. Stable and efficient charging of superconducting C-shunt flux quantum batteries. Preprint at https://arxiv.org/abs/2504.07464 (2025).

  76. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  ADS  Google Scholar 

  77. Gemme, G., Grossi, M., Ferraro, D., Vallecorsa, S. & Sassetti, M. IBM quantum platforms: a quantum battery perspective. Batteries 8, 43 (2022).

    Article  Google Scholar 

  78. Morrone, D., Rossi, M. A. C., Smirne, A. & Genoni, M. G. Charging a quantum battery in a non-Markovian environment: a collisional model approach. Quantum Sci. Technol. 8, 035007 (2023).

    Article  ADS  Google Scholar 

  79. Gemme, G., Grossi, M., Vallecorsa, S., Sassetti, M. & Ferraro, D. Qutrit quantum battery: comparing different charging protocols. Phys. Rev. Res. 6, 023091 (2024).

    Article  Google Scholar 

  80. Razzoli, L. et al. Cyclic solid-state quantum battery: thermodynamic characterization and quantum hardware simulation. Quantum Sci. Technol. 10, 015064 (2025).

    Article  ADS  Google Scholar 

  81. Donelli, B., Gherardini, S., Marino, R., Campaioli, F. & Buffoni, L. Charging a quantum spin network with superextensive precision. Phys. Rev. E 111, L062102 (2025).

    Article  ADS  Google Scholar 

  82. Alexander, T. et al. Qiskit pulse: programming quantum computers through the cloud with pulse. Quantum Sci. Technol. 5, 044006 (2020).

    Article  ADS  Google Scholar 

  83. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).

  84. Vacchini, B. Open Quantum Systems (Springer, 2024).

  85. Farina, D., Andolina, G. M., Mari, A., Polini, M. & Giovannetti, V. Charger-mediated energy transfer for quantum batteries: an open-system approach. Phys. Rev. B 99, 035421 (2019).

    Article  ADS  Google Scholar 

  86. Caravelli, F., Yan, B., García-Pintos, L. P. & Hamma, A. Energy storage and coherence in closed and open quantum batteries. Quantum 5, 505 (2021).

    Article  Google Scholar 

  87. Zakavati, S., Tabesh, F. T. & Salimi, S. Bounds on charging power of open quantum batteries. Phys. Rev. E 104, 054117 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  88. Pirmoradian, F. & Mølmer, K. Aging of a quantum battery. Phys. Rev. A 100, 043833 (2019).

    Article  ADS  Google Scholar 

  89. Quach, J. Q. & Munro, W. J. Using dark states to charge and stabilize open quantum batteries. Phys. Rev. Appl. 14, 024092 (2020).

    Article  ADS  Google Scholar 

  90. Carrasco, J., Maze, J. R., Hermann-Avigliano, C. & Barra, F. Collective enhancement in dissipative quantum batteries. Phys. Rev. E 105, 064119 (2022).

    Article  ADS  Google Scholar 

  91. Canzio, A., Cavina, V., Polini, M. & Giovannetti, V. Single-atom dissipation and dephasing in Dicke and Tavis-Cummings quantum batteries. Phys. Rev. A 111, 022222 (2025).

    Article  ADS  MathSciNet  Google Scholar 

  92. Carrega, M., Crescente, A., Ferraro, D. & Sassetti, M. Dissipative dynamics of an open quantum battery. N. J. Phys. 22, 083085 (2020).

    Article  Google Scholar 

  93. Yadav, M., Tiwari, D. & Banerjee, S. (Thermo-)dynamics of the spin-boson model in the weak coupling regime: application as a quantum battery. Preprint at https://arxiv.org/abs/2504.15712 (2025).

  94. Rivas, A., Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  95. Breuer, H. P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).

    Article  ADS  Google Scholar 

  96. Einsiedler, S., Ketterer, A. & Breuer, H.-P. Non-Markovianity of quantum Brownian motion. Phys. Rev. A 102, 022228 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  97. Wiedmann, M., Stockburger, J. T. & Ankerhold, J. Non-Markovian dynamics of a quantum heat engine: out-of-equilibrium operation and thermal coupling control. N. J. Phys. 22, 033007 (2020).

    Article  MathSciNet  Google Scholar 

  98. Cavaliere, F. et al. Dynamical heat engines with non-Markovian reservoirs. Phys. Rev. Res. 4, 033233 (2022).

    Article  Google Scholar 

  99. Liu, J., Segal, D. & Hanna, G. Loss-free excitonic quantum battery. J. Phys. Chem. C 123, 18303–18314 (2019).

    Article  Google Scholar 

  100. Yao, Y. & Shao, X. Q. Stable charging of a Rydberg quantum battery in an open system. Phys. Rev. E 104, 044116 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  101. Xu, K., Zhu, H.-J., Zhu, H., Zhang, G.-F. & Liu, W.-M. Charging and self-discharging process of a quantum battery in composite environments. Front. Phys. 18, 31301 (2023).

    Article  ADS  Google Scholar 

  102. Dou, F.-Q. & Yang, F.-M. Superconducting transmon qubit-resonator quantum battery. Phys. Rev. A 107, 023725 (2023).

    Article  ADS  Google Scholar 

  103. Song, W.-L., Wang, J.-L., Zhou, B., Yang, W.-L. & An, J.-H. Self-discharging mitigated quantum battery. Phys. Rev. Lett. 135, 020405 (2025).

    Article  ADS  Google Scholar 

  104. Behzadi, N. & Kasani, H. Mechanism of controlling robust and stable charging of open quantum batteries. J. Phys. A 55, 425303 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  105. Liu, S.-Q., Wang, L., Fan, H., Wu, F.-L. & Liu, S.-Y. Better performance of quantum batteries in different environments compared to closed batteries. Phys. Rev. A 109, 042411 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  106. Bai, S. Y. & An, J.-H. Floquet engineering to reactivate a dissipative quantum battery. Phys. Rev. A 102, 060201(R) (2020).

    Article  ADS  Google Scholar 

  107. Tabesh, F. T., Kamin, F. H. & Salimi, S. Environment-mediated charging process of quantum batteries. Phys. Rev. A 102, 052223 (2020).

    Article  ADS  Google Scholar 

  108. Ghosh, S., Chanda, T., Mal, S. & Sen De, A. Fast charging of a quantum battery assisted by noise. Phys. Rev. A 104, 032207 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  109. Kamin, F. H., Tabesh, F. T., Salimi, S., Kheirandish, F. & Santos, A. C. Non-Markovian effects on charging and self-discharging process of quantum batteries. N. J. Phys. 22, 083007 (2020).

    Article  MathSciNet  Google Scholar 

  110. Bhanja, G., Tiwari, D. & Banerjee, S. Impact of non-Markovian quantum Brownian motion on quantum batteries. Phys. Rev. A 109, 012224 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  111. Feliù, D. & Barra, F. System-bath correlations and finite-time operation enhance the efficiency of a dissipative quantum battery. Quantum Sci. Technol. 9, 035043 (2024).

    Article  ADS  Google Scholar 

  112. Ahmadi, B. & Mazurek, P. Nonreciprocal quantum batteries. Phys. Rev. Lett. 132, 210402 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  113. Ahmadi, B., Mazurek, P., Barzanjeh, S. & Horodecki, P. Superoptimal charging of quantum batteries via reservoir engineering: arbitrary energy transfer unlocked. Phys. Rev. Appl. 23, 024010 (2025).

    Article  ADS  Google Scholar 

  114. Albarelli, F., Vacchini, B. & Smirne, A. Pseudomode treatment of strong-coupling quantum thermodynamics. Quantum Sci. Technol. 10, 015041 (2024).

    Article  ADS  Google Scholar 

  115. Xu, K., Zhu, H.-J., Zhang, G.-F. & Liu, W.-M. Enhancing the performance of an open quantum battery via environment engineering. Phys. Rev. E 104, 064143 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  116. Song, M.-L., Li, L.-J., Song, X.-K., Ye, L. & Wang, D. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E 106, 054107 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  117. Yu, W.-L. et al. Enhancement of charging performance of quantum battery via quantum coherence of bath. Chin. Phys. B 32, 010302 (2023).

    Article  ADS  Google Scholar 

  118. Centrone, F., Mancino, L. & Paternostro, M. Charging batteries with quantum squeezing. Phys. Rev. A 108, 052213 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  119. Barra, F. Dissipative charging of a quantum battery. Phys. Rev. Lett. 122, 210601 (2019).

    Article  ADS  Google Scholar 

  120. Kockum, A. F., Miranowiez, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

    Article  Google Scholar 

  121. Dou, F.-Q., Lu, Y.-Q., Wang, Y.-J. & Sun, J.-A. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B 105, 115405 (2022).

    Article  ADS  Google Scholar 

  122. Crescente, A., Ferraro, D. & Sassetti, M. Boosting energy transfer between quantum devices through spectrum engineering in the dissipative ultrastrong coupling regime. Phys. Rev. Res. 6, 023092 (2024).

    Article  Google Scholar 

  123. Vool, U. & Devoret, M. Introduction to quantum electromagnetic circuits. Int. J. Circuit Theory Appl. 45, 897–934 (2017).

    Article  Google Scholar 

  124. Koch, C. P. et al. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 9, 19 (2022).

    Article  ADS  Google Scholar 

  125. Sutton, R. S. & Barto, A. G. Reinforcement Learning: An Introduction (MIT Press, 2018).

  126. Rodríguez, C., Rosa, D. & Olle, J. Artificial intelligence discovery of a charging protocol in a micromaser quantum battery. Phys. Rev. A 108, 042618 (2023).

    Article  ADS  Google Scholar 

  127. Erdman, P. A., Andolina, G. M., Giovannetti, V. & Noé, F. Reinforcement learning optimization of the charging of a Dicke quantum battery. Phys. Rev. Lett. 133, 243602 (2024).

    Article  ADS  Google Scholar 

  128. Evangelakos, V., Paspalakis, E. & Stefanatos, D. Fast charging of an Ising-spin-pair quantum battery using optimal control. Phys. Rev. A 110, 052601 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  129. Evangelakos, V., Paspalakis, E. & Stefanatos, D. Rapid charging of a two-qubit quantum battery by transverse field amplitude and phase control. Quantum Sci. Technol. 10, 035024 (2025).

    Article  ADS  Google Scholar 

  130. Slosser, J. J., Maystre, P. & Braunstein, S. L. Harmonic oscillator driven by a quantum current. Phys. Rev. Lett. 63, 934–937 (1989).

    Article  ADS  Google Scholar 

  131. Meystre, P. & Sargent, M. Elements of Quantum Optics (Springer, 1998).

  132. Shaghaghi, V., Singh, V., Benenti, G. & Rosa, D. Micromasers as quantum batteries. Quantum Sci. Technol. 7, 04LT01 (2022).

    Article  Google Scholar 

  133. Villaseñor, D. et al. Classical and quantum properties of the spin-boson Dicke model: chaos, localization, and scarring. Preprint at https://arxiv.org/abs/2405.20381 (2024).

  134. Rodríguez, R. R. et al. Optimal quantum control of charging quantum batteries. N. J. Phys. 26, 043004 (2024).

    Article  MathSciNet  Google Scholar 

  135. Sun, P.-Y., Zhou, H. & Dou, F.-Q. Cavity-Heisenberg spin-j chain quantum battery and reinforcement learning optimization. Preprint at https://arxiv.org/abs/2412.01442 (2024).

  136. Zakavati, S. et al. Optimizing the charging of open quantum batteries using long short-term memory-driven reinforcement learning. Preprint at https://arxiv.org/abs/2504.19840 (2025).

  137. Wiseman, H. M. & Milburn, G. J. Quantum Measurement and Control (Cambridge Univ. Press, 2009).

  138. Facchi, P. & Pascazio, S. Quantum Zeno dynamics: mathematical and physical aspects. J. Phys. A 41, 493001 (2008).

    Article  MathSciNet  Google Scholar 

  139. Gherardini, S., Campaioli, F., Caruso, F. & Binder, F. C. Stabilizing open quantum batteries by sequential measurements. Phys. Rev. Res. 2, 013095 (2020).

    Article  Google Scholar 

  140. Albarelli, F. & Genoni, M. G. A pedagogical introduction to continuously monitored quantum systems and measurement-based feedback. Phys. Lett. A 494, 129260 (2024).

    Article  MathSciNet  Google Scholar 

  141. Mitchison, M. T., Goold, J. & Prior, J. Charging a quantum battery with linear feedback control. Quantum 5, 500 (2021).

    Article  Google Scholar 

  142. Yao, Y. & Shao, X. Q. Optimal charging of open spin-chain quantum batteries via homodyne-based feedback control. Phys. Rev. E 106, 014138 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  143. de Oliveira Junior, A., Bohr Brask, J. & Chaves, R. A friendly guide to exorcising Maxwell’s demon. PRX Quantum 6, 030201 (2025).

    Article  Google Scholar 

  144. Francica, G., Goold, J., Plastina, F. & Paternostro, M. Daemonic ergotropy: enhanced work extraction from quantum correlations. npj Quantum Inf. 3, 12 (2017).

    Article  ADS  Google Scholar 

  145. Manzano, G., Plastina, F. & Zambrini, R. Optimal work extraction and thermodynamics of quantum measurements and correlations. Phys. Rev. Lett. 121, 120602 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  146. Morrone, D., Rossi, M. A. C. & Genoni, M. G. Daemonic ergotropy in continuously monitored open quantum batteries. Phys. Rev. Appl. 20, 044073 (2023).

    Article  ADS  Google Scholar 

  147. Hua, K. H., Serafini, A. & Genoni, M. G. Daemonic ergotropy of Gaussian quantum states and the role of measurement-induced purification via general-dyne detection. Preprint at https://arxiv.org/abs/2506.22288 (2025).

  148. Cottet, N. et al. Observing a quantum Maxwell demon at work. Proc. Natl Acad. Sci. USA 114, 7561–7564 (2017).

    Article  ADS  Google Scholar 

  149. Elyasi, S. N., Rossi, M. A. C. & Genoni, M. G. Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer. Quantum Sci. Technol. 10, 025017 (2025).

    Article  ADS  Google Scholar 

  150. Stahl, A. et al. Demonstration of energy extraction gain from non-classical correlations. Preprint at https://arxiv.org/abs/2404.14838 (2024).

  151. Chiribella, G., Yang, Y. & Renner, R. Fundamental energy requirement of reversible quantum operations. Phys. Rev. X 11, 021014 (2021).

    Google Scholar 

  152. Cioni, F., Menta, R., Aiudi, R., Polini, M. & Giovannetti, V. Conveyor-belt superconducting quantum computer. Preprint at https://arxiv.org/abs/2412.11782 (2024).

  153. Kurman, Y., Hymas, K., Fedorov, A., Munro, W. J. & Quach, J. Q. Quantum computation with quantum batteries. Preprint at https://arxiv.org/abs/2503.23610 (2025).

  154. Faist, P. & Renner, R. Fundamental work cost of quantum processes. Phys. Rev. X 8, 021011 (2018).

    Google Scholar 

  155. Monsel, J., Fellous-Asiani, M., Huard, B. & Auffèves, A. The energetic cost of work extraction. Phys. Rev. Lett. 124, 130601 (2020).

    Article  ADS  Google Scholar 

  156. Auffèves, A. Quantum technologies need a quantum energy initiative. PRX Quantum 3, 020101 (2022).

    Article  ADS  Google Scholar 

  157. Hymas, K. et al. Superradiant organic light-emitting diodes. Preprint at https://arxiv.org/abs/2507.14934 (2025).

  158. Cavaliere, F., Ferraro, D., Carrega, M., Benenti, G. & Sassetti, M. Quantum advantage bounds for a multipartite Gaussian battery. Preprint at https://arxiv.org/abs/2510.24162 (2025).

  159. Roulet, A., Nimmrichter, S., Arrazola, J. M., Seah, S. & Scarani, V. Autonomous rotor heat engine. Phys. Rev. A 95, 062131 (2017).

    Google Scholar 

  160. Van Horne, N. et al. Single-atom energy-conversion device with a quantum load. npj Quantum Inf. 6, 37 (2020).

    Article  ADS  Google Scholar 

  161. Gauthameshwar, S., Jaseem, N. & Poletti, D. Emergence of thermodynamic functioning regimes from finite coupling between a quantum thermal machine and a load. Preprint at https://arxiv.org/abs/2506.01852 (2025).

  162. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009).

    Article  ADS  Google Scholar 

  163. Minagawa, S., Mohammady, M. H., Sakai, K., Kohtaro, K. & Buscemi, F. Universal validity of the second law of information thermodynamics. npj Quantum Inf. 11, 18 (2025).

    Article  ADS  Google Scholar 

  164. Callen, H. B. Thermodynamics and an Introduction to Thermostatics 2nd edn (Wiley, 1985).

  165. Lenard, A. Thermodynamical proof of the Gibbs formula for elementary quantum systems. J. Stat. Phys. 19, 575–586 (1978).

    Article  ADS  Google Scholar 

  166. Pusz, W. & Woronowicz, S. L. Passive states and KMS states for general quantum systems. Commun. Math. Phys. 58, 273–290 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  167. Feynman, R. P. & Vernon, F. L. The theory of a general quantum system interacting with a linear dissipative system. Ann. Phys. 24, 118–173 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  168. Strasberg, P., Schaller, G., Lambert, L. & Brandes, T. Nonequilibrium thermodynamics in the strong coupling and non-Markovian regime based on a reaction coordinate mapping. N. J. Phys. 18, 073007 (2016).

    Article  Google Scholar 

  169. Carrega, M., Solinas, P., Sassetti, M. & Weiss, U. Energy exchange in driven open quantum systems at strong coupling. Phys. Rev. Lett. 116, 240403 (2016).

    Article  ADS  Google Scholar 

  170. Brenes, M. et al. Tensor-network method to simulate strongly interacting quantum thermal machines. Phys. Rev. X 10, 031040 (2020).

    Google Scholar 

  171. Tanimura, J. Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems. J. Phys. Soc. Jpn 75, 082001 (2006).

    Article  ADS  Google Scholar 

  172. De Filippis, G. et al. Signatures of dissipation driven quantum phase transition in Rabi model. Phys. Rev. Lett. 130, 210404 (2023).

    Article  Google Scholar 

  173. Carrega, M. et al. Engineering dynamical couplings for quantum thermodynamic tasks. PRX Quantum 3, 010323 (2022).

    Article  ADS  Google Scholar 

  174. Caldeira, A. O. & Leggett, A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 (1981).

    Article  ADS  Google Scholar 

  175. Ciccarello, F., Lorenzo, S., Giovannetti, V. & Palma, G. M. Quantum collision models: open system dynamics from repeated interactions. Phys. Rep. 954, 1–70 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  176. Seah, S., Perarnau-Llobet, M., Haack, G., Brunner, N. & Nimmrichter, S. Quantum speed-up in collisional battery charging. Phys. Rev. Lett. 127, 100601 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  177. Salvia, R., Perarnau-Llobet, M., Haack, G., Brunner, N. & Nimmrichter, S. Quantum advantage in charging cavity and spin batteries by repeated interactions. Phys. Rev. Res. 5, 013155 (2023).

    Article  Google Scholar 

  178. Shaghaghi, V., Singh, V., Carrega, M., Rosa, D. & Benenti, G. Lossy micromaser battery: almost pure states in the Jaynes–Cummings regime. Entropy 25, 430 (2023).

    Article  ADS  Google Scholar 

  179. Massa, N., Cavaliere, F. & Ferraro, D. Collisional charging of a transmon quantum battery. Batteries 11, 240 (2025).

    Article  Google Scholar 

Download references

Acknowledgements

F.C. acknowledges discussions with C. Capelli regarding the simplified exposition of the chemical reactions occurring in a classical battery. D.F. acknowledges discussions with G. Gemme, R. Grazi and N. Traverso Ziani.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the realization of this paper.

Corresponding author

Correspondence to Maura Sassetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Clebson Cruz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraro, D., Cavaliere, F., Genoni, M.G. et al. Opportunities and challenges of quantum batteries. Nat Rev Phys 8, 115–127 (2026). https://doi.org/10.1038/s42254-025-00906-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42254-025-00906-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing