Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Simulating topological order on quantum processors

Abstract

It is an ongoing quest to realize topologically ordered quantum states on different platforms including condensed matter systems, quantum simulators and digital quantum processors. Unlike conventional states characterized by their local order, these exotic states are characterized by their non-local entanglement. The consequences of topological order can be as profound as they are surprising, ranging from the emergence of fractionalized anyonic excitations to potentially providing a scalable platform for quantum error correction. This deep connection to quantum computing naturally motivates the realization and study of topologically ordered quantum states on quantum processors. However, owing to the non-local nature of these states, their study presents a challenge for near-term quantum devices. This Perspective aims to review the recent progress towards the experimental realization of topologically ordered quantum states, their potential applications and promising directions of future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of symmetry-protected topological states on quantum computers.
Fig. 2: Characterizing SPT order on quantum computers.
Fig. 3: Preparing topological order on quantum processors.
Fig. 4: Characterizing topological order.

Similar content being viewed by others

References

  1. Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).

  2. Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  3. Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  4. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  5. Jiang, Z., Sung, K. J., Kechedzhi, K., Smelyanskiy, V. N. & Boixo, S. Quantum algorithms to simulate many-body physics of correlated fermions. Phys. Rev. Appl. 9, 044036 (2018).

    Article  ADS  Google Scholar 

  6. Kivlichan, I. D. et al. Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett. 120, 110501 (2018).

    Article  MathSciNet  ADS  Google Scholar 

  7. Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997).

    Article  MathSciNet  Google Scholar 

  8. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  ADS  Google Scholar 

  9. Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).

    Article  ADS  Google Scholar 

  10. Endres, M. et al. Observation of correlated particle–hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).

    Article  ADS  Google Scholar 

  11. Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484–487 (2017).

    Article  MathSciNet  ADS  Google Scholar 

  12. de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  13. Sompet, P. et al. Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).

    Article  ADS  Google Scholar 

  14. Su, L. et al. Topological phases, criticality, and mixed state order in a Hubbard quantum simulator. Preprint at https://arxiv.org/abs/2505.17009 (2025).

  15. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  ADS  Google Scholar 

  16. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).

    Article  ADS  Google Scholar 

  17. Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).

    Article  ADS  Google Scholar 

  18. Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).

    Article  ADS  Google Scholar 

  19. Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).

    Article  ADS  Google Scholar 

  20. Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).

    Article  ADS  Google Scholar 

  21. Wen, X.-G. Topological orders in rigid states. Int. J. Mod. Phys. B 4, 239–271 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  22. Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).

    Article  ADS  Google Scholar 

  23. Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    Article  ADS  Google Scholar 

  24. Jiang, T. et al. Generation of 95-qubit genuine entanglement and verification of symmetry-protected topological phases. Preprint at https://arxiv.org/abs/2505.01978 (2025).

  25. Son, W. et al. Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 50001 (2011).

    Article  ADS  Google Scholar 

  26. Buyers, W. J. L. et al. Experimental evidence for the Haldane gap in a spin-1 nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett. 56, 371–374 (1986).

    Article  ADS  Google Scholar 

  27. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  28. den Nijs, M. & Rommelse, K. Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709–4734 (1989).

    Article  ADS  Google Scholar 

  29. Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012).

    Article  ADS  Google Scholar 

  30. Else, D. V., Schwarz, I., Bartlett, S. D. & Doherty, A. C. Symmetry-protected phases for measurement-based quantum computation. Phys. Rev. Lett. 108, 240505 (2012).

    Article  ADS  Google Scholar 

  31. Schön, C., Hammerer, K., Wolf, M. M., Cirac, J. I. & Solano, E. Sequential generation of matrix-product states in cavity QED. Phys. Rev. A 75, 032311 (2007).

    Article  ADS  Google Scholar 

  32. Smith, K. C., Crane, E., Wiebe, N. & Girvin, S. Deterministic constant-depth preparation of the AKLT state on a quantum processor using fusion measurements. PRX Quantum 4, 020315 (2023).

    Article  ADS  Google Scholar 

  33. Kumaran, K. et al. Transmon qutrit-based simulation of spin-1 AKLT systems. Preprint at https://arxiv.org/abs/2412.19786 (2025).

  34. Smith, A., Jobst, B., Green, A. G. & Pollmann, F. Crossing a topological phase transition with a quantum computer. Phys. Rev. Res. 4, L022020 (2022).

    Article  Google Scholar 

  35. Foss-Feig, M. et al. Holographic quantum algorithms for simulating correlated spin systems. Phys. Rev. Res. 3, 033002 (2021).

    Article  Google Scholar 

  36. Piroli, L., Styliaris, G. & Cirac, J. I. Quantum circuits assisted by local operations and classical communication: transformations and phases of matter. Phys. Rev. Lett. 127, 220503 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  37. Sahay, R. & Verresen, R. Classifying one-dimensional quantum states prepared by a single round of measurements. PRX Quantum 6, 010329 (2025).

    Article  ADS  Google Scholar 

  38. Wei, Z.-Y., Malz, D. & Cirac, J. I. Efficient adiabatic preparation of tensor network states. Phys. Rev. Res. 5, L022037 (2023).

    Article  Google Scholar 

  39. Malz, D., Styliaris, G., Wei, Z.-Y. & Cirac, J. I. Preparation of matrix product states with log-depth quantum circuits. Phys. Rev. Lett. 132, 040404 (2024).

    Article  MathSciNet  ADS  Google Scholar 

  40. Choo, K., von Keyserlingk, C. W., Regnault, N. & Neupert, T. Measurement of the entanglement spectrum of a symmetry-protected topological state using the IBM quantum computer. Phys. Rev. Lett. 121, 086808 (2018).

    Article  ADS  Google Scholar 

  41. Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019).

    Article  Google Scholar 

  42. Herrmann, J. et al. Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases. Nat. Commun. https://doi.org/10.1038/s41467-022-31679-5 (2022).

  43. Sadoune, N. et al. Learning symmetry-protected topological order from trapped-ion experiments. Preprint at https://arxiv.org/abs/2408.05017 (2024).

  44. Liu, Y.-J., Smith, A., Knap, M. & Pollmann, F. Model-independent learning of quantum phases of matter with quantum convolutional neural networks. Phys. Rev. Lett. 130, 220603 (2023).

    Article  MathSciNet  ADS  Google Scholar 

  45. Simon, S. H. Topological Quantum (Oxford Academic, 2023).

  46. Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010).

    Article  ADS  Google Scholar 

  47. Coser, A. & Pérez-García, D. Classification of phases for mixed states via fast dissipative evolution. Quantum 3, 174 (2019).

    Article  Google Scholar 

  48. Sang, S., Zou, Y. & Hsieh, T. H. Mixed-state quantum phases: renormalization and quantum error correction. Phys. Rev. X 14, 031044 (2024).

    Google Scholar 

  49. Sohal, R. & Prem, A. Noisy approach to intrinsically mixed-state topological order. PRX Quantum 6, 010313 (2025).

    Article  ADS  Google Scholar 

  50. Wang, Z., Wu, Z. & Wang, Z. Intrinsic mixed-state topological order. PRX Quantum 6, 010314 (2025).

    Article  ADS  Google Scholar 

  51. Ellison, T. D. & Cheng, M. Toward a classification of mixed-state topological orders in two dimensions. PRX Quantum 6, 010315 (2025).

    Article  ADS  Google Scholar 

  52. Zhou, S.-T., Cheng, M., Rakovszky, T., von Keyserlingk, C. & Ellison, T. D. Finite-temperature quantum topological order in three dimensions. Phys. Rev. Lett. 135, 040402 (2025).

    Article  MathSciNet  ADS  Google Scholar 

  53. Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).

    Article  ADS  Google Scholar 

  54. König, R., Reichardt, B. W. & Vidal, G. Exact entanglement renormalization for string-net models. Phys. Rev. B 79, 195123 (2009).

    Article  ADS  Google Scholar 

  55. Levin, M. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).

    Article  ADS  Google Scholar 

  56. Liu, Y.-J., Shtengel, K., Smith, A. & Pollmann, F. Methods for simulating string-net states and anyons on a digital quantum computer. PRX Quantum 3, 040315 (2022).

    Article  ADS  Google Scholar 

  57. Boesl, J., Liu, Y.-J., Pollmann, F. & Knap, M. Skeleton of isometric tensor network states for Abelian string-net models. Preprint at https://arxiv.org/abs/2511.13821 (2025).

  58. Xu, S. et al. Non-Abelian braiding of Fibonacci anyons with a superconducting processor. Nat. Phys. 20, 1469–1475 (2024).

    Article  Google Scholar 

  59. Minev, Z. K. et al. Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials. Nat. Commun. https://doi.org/10.1038/s41467-025-61493-8 (2025).

  60. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). January Special Issue.

    Article  MathSciNet  ADS  Google Scholar 

  61. Will, M. et al. Probing non-equilibrium topological order on a quantum processor. Nature 645, 348–353 (2025).

    Article  ADS  Google Scholar 

  62. Evered, S. J. et al. Probing the Kitaev honeycomb model on a neutral-atom quantum computer. Nature 645, 341–347 (2025).

    Article  ADS  Google Scholar 

  63. Ali, A. et al. Robust chiral edge dynamics of a Kitaev honeycomb on a trapped ion processor. Preprint at https://arxiv.org/abs/2507.08939 (2025).

  64. Tantivasadakarn, N., Verresen, R. & Vishwanath, A. Shortest route to non-Abelian topological order on a quantum processor. Phys. Rev. Lett. 131, 060405 (2023).

    Article  MathSciNet  ADS  Google Scholar 

  65. Tantivasadakarn, N., Vishwanath, A. & Verresen, R. Hierarchy of topological order from finite-depth unitaries, measurement, and feedforward. PRX Quantum 4, 020339 (2023).

    Article  ADS  Google Scholar 

  66. Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).

    Article  ADS  Google Scholar 

  67. Lo, C. F. B., Lyons, A., Verresen, R., Vishwanath, A. & Tantivasadakarn, N. A universal quantum computation with the s3 quantum double. npj Quant. Inform. 11, 112 (2025).

    Article  Google Scholar 

  68. Lu, T.-C., Lessa, L. A., Kim, I. H. & Hsieh, T. H. Measurement as a shortcut to long-range entangled quantum matter. PRX Quantum 3, 040337 (2022).

    Article  ADS  Google Scholar 

  69. Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).

  70. Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  71. Google Quantum AI & Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).

    Article  ADS  Google Scholar 

  72. Iqbal, M., Tantivasadakarn, N. & Verresen, R. et al. Non-Abelian topological order and anyons on a trapped-ion processor. Nature 626, 505–511 (2024).

    Article  ADS  Google Scholar 

  73. Shi, B., Kato, K. & Kim, I. H. Fusion rules from entanglement. Ann. Phys. 418, 168164 (2020).

    Article  MathSciNet  Google Scholar 

  74. Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  75. Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).

    Article  ADS  Google Scholar 

  76. Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. 298, 210–226 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  77. Verstraete, F. & Cirac, J. I. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. J. Stat. Mech. Theory Exp. 2005, P09012 (2005).

    Article  MathSciNet  Google Scholar 

  78. Derby, C., Klassen, J., Bausch, J. & Cubitt, T. Compact fermion to qubit mappings. Phys. Rev. B 104, 035118 (2021).

    Article  ADS  Google Scholar 

  79. Chen, Y.-A. & Xu, Y. Equivalence between fermion-to-qubit mappings in two spatial dimensions. PRX Quantum 4, 010326 (2023).

    Article  ADS  Google Scholar 

  80. Nigmatullin, R. et al. Experimental demonstration of break-even for the compact fermionic encoding. Nat. Phys. 21, 1319–1325 (2025).

    Article  Google Scholar 

  81. Fredenhagen, K. & Marcu, M. Charged states in z2 gauge theories. Commun. Math. Phys. 92, 81–119 (1983).

    Article  ADS  Google Scholar 

  82. Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).

    Article  ADS  Google Scholar 

  83. Xu, W.-T., Pollmann, F. & Knap, M. Critical behavior of Fredenhagen–Marcu string order parameters at topological phase transitions with emergent higher-form symmetries. npj Quantum Inf. 11, 74 (2025).

    Article  ADS  Google Scholar 

  84. Liu, Y.-J., Xu, W.-T., Pollmann, F. & Knap, M. Detecting emergent 1-form symmetries with quantum error correction. Preprint at https://arxiv.org/abs/2502.17572 (2019).

  85. Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).

    Article  Google Scholar 

  86. Bluvstein, D., Evered, S. & Geim, A. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article  ADS  Google Scholar 

  87. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    Article  ADS  Google Scholar 

  88. Koenig, R., Kuperberg, G. & Reichardt, B. W. Quantum computation with Turaev–Viro codes. Ann. Phys. 325, 2707–2749 (2010).

    Article  MathSciNet  ADS  Google Scholar 

  89. Wootton, J. R., Burri, J., Iblisdir, S. & Loss, D. Error correction for non-Abelian topological quantum computation. Phys. Rev. X 4, 011051 (2014).

    Google Scholar 

  90. Dauphinais, G., Ortiz, L., Varona, S. & Martin-Delgado, M. A. Quantum error correction with the semion code. New J. Phys. 21, 053035 (2019).

    Article  MathSciNet  ADS  Google Scholar 

  91. Zhu, G., Hafezi, M. & Barkeshli, M. Quantum origami: transversal gates for quantum computation and measurement of topological order. Phys. Rev. Res. 2, 013285 (2020).

    Article  Google Scholar 

  92. Schotte, A., Zhu, G., Burgelman, L. & Verstraete, F. Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code. Phys. Rev. X 12, 021012 (2022).

    Google Scholar 

  93. Bravyi, S. & Haah, J. Quantum self-correction in the 3D cubic code model. Phys. Rev. Lett. 111, 200501 (2013).

    Article  ADS  Google Scholar 

  94. Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14, 1339–1371 (2014).

    MathSciNet  Google Scholar 

  95. Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).

    Article  ADS  Google Scholar 

  96. Quantum codes. https://errorcorrectionzoo.org/list/quantum (2025).

  97. Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press, 2012).

  98. Chamon, C. Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. Phys. Rev. Lett. 94, 040402 (2005).

    Article  ADS  Google Scholar 

  99. Haah, J. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011).

    Article  ADS  Google Scholar 

  100. Vijay, S., Haah, J. & Fu, L. Fracton topological order, generalized lattice gauge theory, and duality. Phys. Rev. B https://doi.org/10.1103/PhysRevB.94.235157 (2016).

  101. Boesl, J., Liu, Y.-J., Xu, W.-T., Pollmann, F. & Knap, M. Quantum phase transitions between symmetry-enriched fracton phases. Phys. Rev. B https://doi.org/10.1103/fsr8-xd4n (2025).

  102. Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).

    Article  ADS  Google Scholar 

  103. Castelnovo, C. & Chamon, C. Topological order in a three-dimensional toric code at finite temperature. Phys. Rev. B 78, 155120 (2008).

    Article  ADS  Google Scholar 

  104. Yoshida, B. Feasibility of self-correcting quantum memory and thermal stability of topological order. Ann. Phys. 326, 2566–2633 (2011).

    Article  ADS  Google Scholar 

  105. Knill, E., Laflamme, R. & Viola, L. Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  106. Brown, B. J., Loss, D., Pachos, J. K., Self, C. N. & Wootton, J. R. Quantum memories at finite temperature. Rev. Mod. Phys. 88, 045005 (2016).

    Article  MathSciNet  ADS  Google Scholar 

  107. Placke, B., Rakovszky, T., Breuckmann, N. P. & Khemani, V. Topological quantum spin glass order and its realization in qLDPC codes. Preprint at https://arxiv.org/abs/2412.13248 (2024).

  108. Li, Y., von Keyserlingk, C. W., Zhu, G. & Jochym-O’Connor, T. Phase diagram of the three-dimensional subsystem toric code. Phys. Rev. Res. https://doi.org/10.1103/PhysRevResearch.6.043007 (2024).

  109. Gunn, D., Styliaris, G., Kraft, T. & Kraus, B. Phases of matrix product states with symmetric quantum circuits and symmetric measurements with feedforward. Phys. Rev. B 111, 115110 (2025).

    Article  ADS  Google Scholar 

  110. Cochran, T. A. et al. Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories. Nature 642, 315–320 (2025).

    Article  ADS  Google Scholar 

  111. Po, H. C., Fidkowski, L., Vishwanath, A. & Potter, A. C. Radical chiral Floquet phases in a periodically driven Kitaev model and beyond. Phys. Rev. B 96, 245116 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.G.-S. was supported by the UK Research and Innovation (UKRI) under the UK Government’s Horizon Europe funding guarantee (grant no. EP/Y036069/1). M.K. and F.P. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy-EXC-2111-390814868, TRR 360 — 492547816, FOR 5522 (project-id 499180199), and DFG grants no. KN1254/1-2 and no. KN1254/2-1, the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 851161), the European Union (grant agreement no. 101169765) and the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Adam Gammon-Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Heng Fan and Feng Mei for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gammon-Smith, A., Knap, M. & Pollmann, F. Simulating topological order on quantum processors. Nat Rev Phys (2026). https://doi.org/10.1038/s42254-025-00911-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s42254-025-00911-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing