Abstract
It is an ongoing quest to realize topologically ordered quantum states on different platforms including condensed matter systems, quantum simulators and digital quantum processors. Unlike conventional states characterized by their local order, these exotic states are characterized by their non-local entanglement. The consequences of topological order can be as profound as they are surprising, ranging from the emergence of fractionalized anyonic excitations to potentially providing a scalable platform for quantum error correction. This deep connection to quantum computing naturally motivates the realization and study of topologically ordered quantum states on quantum processors. However, owing to the non-local nature of these states, their study presents a challenge for near-term quantum devices. This Perspective aims to review the recent progress towards the experimental realization of topologically ordered quantum states, their potential applications and promising directions of future research.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2004).
Wen, X.-G. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017).
Kitaev, A. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Jiang, Z., Sung, K. J., Kechedzhi, K., Smelyanskiy, V. N. & Boixo, S. Quantum algorithms to simulate many-body physics of correlated fermions. Phys. Rev. Appl. 9, 044036 (2018).
Kivlichan, I. D. et al. Quantum simulation of electronic structure with linear depth and connectivity. Phys. Rev. Lett. 120, 110501 (2018).
Kitaev, A. Y. Quantum computations: algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997).
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Laughlin, R. B. Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983).
Endres, M. et al. Observation of correlated particle–hole pairs and string order in low-dimensional Mott insulators. Science 334, 200–203 (2011).
Hilker, T. A. et al. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators. Science 357, 484–487 (2017).
de Léséleuc, S. et al. Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms. Science 365, 775–780 (2019).
Sompet, P. et al. Realizing the symmetry-protected Haldane phase in Fermi–Hubbard ladders. Nature 606, 484–488 (2022).
Su, L. et al. Topological phases, criticality, and mixed state order in a Hubbard quantum simulator. Preprint at https://arxiv.org/abs/2505.17009 (2025).
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2016).
Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).
Gu, Z.-C. & Wen, X.-G. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order. Phys. Rev. B 80, 155131 (2009).
Pollmann, F., Turner, A. M., Berg, E. & Oshikawa, M. Entanglement spectrum of a topological phase in one dimension. Phys. Rev. B 81, 064439 (2010).
Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).
Wen, X.-G. Topological orders in rigid states. Int. J. Mod. Phys. B 4, 239–271 (1990).
Affleck, I., Kennedy, T., Lieb, E. H. & Tasaki, H. Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59, 799–802 (1987).
Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).
Jiang, T. et al. Generation of 95-qubit genuine entanglement and verification of symmetry-protected topological phases. Preprint at https://arxiv.org/abs/2505.01978 (2025).
Son, W. et al. Quantum phase transition between cluster and antiferromagnetic states. Europhys. Lett. 95, 50001 (2011).
Buyers, W. J. L. et al. Experimental evidence for the Haldane gap in a spin-1 nearly isotropic, antiferromagnetic chain. Phys. Rev. Lett. 56, 371–374 (1986).
Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).
den Nijs, M. & Rommelse, K. Preroughening transitions in crystal surfaces and valence-bond phases in quantum spin chains. Phys. Rev. B 40, 4709–4734 (1989).
Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012).
Else, D. V., Schwarz, I., Bartlett, S. D. & Doherty, A. C. Symmetry-protected phases for measurement-based quantum computation. Phys. Rev. Lett. 108, 240505 (2012).
Schön, C., Hammerer, K., Wolf, M. M., Cirac, J. I. & Solano, E. Sequential generation of matrix-product states in cavity QED. Phys. Rev. A 75, 032311 (2007).
Smith, K. C., Crane, E., Wiebe, N. & Girvin, S. Deterministic constant-depth preparation of the AKLT state on a quantum processor using fusion measurements. PRX Quantum 4, 020315 (2023).
Kumaran, K. et al. Transmon qutrit-based simulation of spin-1 AKLT systems. Preprint at https://arxiv.org/abs/2412.19786 (2025).
Smith, A., Jobst, B., Green, A. G. & Pollmann, F. Crossing a topological phase transition with a quantum computer. Phys. Rev. Res. 4, L022020 (2022).
Foss-Feig, M. et al. Holographic quantum algorithms for simulating correlated spin systems. Phys. Rev. Res. 3, 033002 (2021).
Piroli, L., Styliaris, G. & Cirac, J. I. Quantum circuits assisted by local operations and classical communication: transformations and phases of matter. Phys. Rev. Lett. 127, 220503 (2021).
Sahay, R. & Verresen, R. Classifying one-dimensional quantum states prepared by a single round of measurements. PRX Quantum 6, 010329 (2025).
Wei, Z.-Y., Malz, D. & Cirac, J. I. Efficient adiabatic preparation of tensor network states. Phys. Rev. Res. 5, L022037 (2023).
Malz, D., Styliaris, G., Wei, Z.-Y. & Cirac, J. I. Preparation of matrix product states with log-depth quantum circuits. Phys. Rev. Lett. 132, 040404 (2024).
Choo, K., von Keyserlingk, C. W., Regnault, N. & Neupert, T. Measurement of the entanglement spectrum of a symmetry-protected topological state using the IBM quantum computer. Phys. Rev. Lett. 121, 086808 (2018).
Cong, I., Choi, S. & Lukin, M. D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019).
Herrmann, J. et al. Realizing quantum convolutional neural networks on a superconducting quantum processor to recognize quantum phases. Nat. Commun. https://doi.org/10.1038/s41467-022-31679-5 (2022).
Sadoune, N. et al. Learning symmetry-protected topological order from trapped-ion experiments. Preprint at https://arxiv.org/abs/2408.05017 (2024).
Liu, Y.-J., Smith, A., Knap, M. & Pollmann, F. Model-independent learning of quantum phases of matter with quantum convolutional neural networks. Phys. Rev. Lett. 130, 220603 (2023).
Simon, S. H. Topological Quantum (Oxford Academic, 2023).
Chen, X., Gu, Z.-C. & Wen, X.-G. Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82, 155138 (2010).
Coser, A. & Pérez-García, D. Classification of phases for mixed states via fast dissipative evolution. Quantum 3, 174 (2019).
Sang, S., Zou, Y. & Hsieh, T. H. Mixed-state quantum phases: renormalization and quantum error correction. Phys. Rev. X 14, 031044 (2024).
Sohal, R. & Prem, A. Noisy approach to intrinsically mixed-state topological order. PRX Quantum 6, 010313 (2025).
Wang, Z., Wu, Z. & Wang, Z. Intrinsic mixed-state topological order. PRX Quantum 6, 010314 (2025).
Ellison, T. D. & Cheng, M. Toward a classification of mixed-state topological orders in two dimensions. PRX Quantum 6, 010315 (2025).
Zhou, S.-T., Cheng, M., Rakovszky, T., von Keyserlingk, C. & Ellison, T. D. Finite-temperature quantum topological order in three dimensions. Phys. Rev. Lett. 135, 040402 (2025).
Satzinger, K. J. et al. Realizing topologically ordered states on a quantum processor. Science 374, 1237–1241 (2021).
König, R., Reichardt, B. W. & Vidal, G. Exact entanglement renormalization for string-net models. Phys. Rev. B 79, 195123 (2009).
Levin, M. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005).
Liu, Y.-J., Shtengel, K., Smith, A. & Pollmann, F. Methods for simulating string-net states and anyons on a digital quantum computer. PRX Quantum 3, 040315 (2022).
Boesl, J., Liu, Y.-J., Pollmann, F. & Knap, M. Skeleton of isometric tensor network states for Abelian string-net models. Preprint at https://arxiv.org/abs/2511.13821 (2025).
Xu, S. et al. Non-Abelian braiding of Fibonacci anyons with a superconducting processor. Nat. Phys. 20, 1469–1475 (2024).
Minev, Z. K. et al. Realizing string-net condensation: Fibonacci anyon braiding for universal gates and sampling chromatic polynomials. Nat. Commun. https://doi.org/10.1038/s41467-025-61493-8 (2025).
Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). January Special Issue.
Will, M. et al. Probing non-equilibrium topological order on a quantum processor. Nature 645, 348–353 (2025).
Evered, S. J. et al. Probing the Kitaev honeycomb model on a neutral-atom quantum computer. Nature 645, 341–347 (2025).
Ali, A. et al. Robust chiral edge dynamics of a Kitaev honeycomb on a trapped ion processor. Preprint at https://arxiv.org/abs/2507.08939 (2025).
Tantivasadakarn, N., Verresen, R. & Vishwanath, A. Shortest route to non-Abelian topological order on a quantum processor. Phys. Rev. Lett. 131, 060405 (2023).
Tantivasadakarn, N., Vishwanath, A. & Verresen, R. Hierarchy of topological order from finite-depth unitaries, measurement, and feedforward. PRX Quantum 4, 020339 (2023).
Bluvstein, D. et al. A quantum processor based on coherent transport of entangled atom arrays. Nature 604, 451–456 (2022).
Lo, C. F. B., Lyons, A., Verresen, R., Vishwanath, A. & Tantivasadakarn, N. A universal quantum computation with the s3 quantum double. npj Quant. Inform. 11, 112 (2025).
Lu, T.-C., Lessa, L. A., Kim, I. H. & Hsieh, T. H. Measurement as a shortcut to long-range entangled quantum matter. PRX Quantum 3, 040337 (2022).
Bravyi, S. B. & Kitaev, A. Y. Quantum codes on a lattice with boundary. Preprint at https://arxiv.org/abs/quant-ph/9811052 (1998).
Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).
Google Quantum AI & Collaborators. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2025).
Iqbal, M., Tantivasadakarn, N. & Verresen, R. et al. Non-Abelian topological order and anyons on a trapped-ion processor. Nature 626, 505–511 (2024).
Shi, B., Kato, K. & Kim, I. H. Fusion rules from entanglement. Ann. Phys. 418, 168164 (2020).
Kitaev, A. & Preskill, J. Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006).
Levin, M. & Wen, X.-G. Detecting topological order in a ground state wave function. Phys. Rev. Lett. 96, 110405 (2006).
Bravyi, S. B. & Kitaev, A. Y. Fermionic quantum computation. Ann. Phys. 298, 210–226 (2002).
Verstraete, F. & Cirac, J. I. Mapping local Hamiltonians of fermions to local Hamiltonians of spins. J. Stat. Mech. Theory Exp. 2005, P09012 (2005).
Derby, C., Klassen, J., Bausch, J. & Cubitt, T. Compact fermion to qubit mappings. Phys. Rev. B 104, 035118 (2021).
Chen, Y.-A. & Xu, Y. Equivalence between fermion-to-qubit mappings in two spatial dimensions. PRX Quantum 4, 010326 (2023).
Nigmatullin, R. et al. Experimental demonstration of break-even for the compact fermionic encoding. Nat. Phys. 21, 1319–1325 (2025).
Fredenhagen, K. & Marcu, M. Charged states in z2 gauge theories. Commun. Math. Phys. 92, 81–119 (1983).
Semeghini, G. et al. Probing topological spin liquids on a programmable quantum simulator. Science 374, 1242–1247 (2021).
Xu, W.-T., Pollmann, F. & Knap, M. Critical behavior of Fredenhagen–Marcu string order parameters at topological phase transitions with emergent higher-form symmetries. npj Quantum Inf. 11, 74 (2025).
Liu, Y.-J., Xu, W.-T., Pollmann, F. & Knap, M. Detecting emergent 1-form symmetries with quantum error correction. Preprint at https://arxiv.org/abs/2502.17572 (2019).
Andersen, T. I. et al. Non-Abelian braiding of graph vertices in a superconducting processor. Nature 618, 264–269 (2023).
Bluvstein, D., Evered, S. & Geim, A. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).
Koenig, R., Kuperberg, G. & Reichardt, B. W. Quantum computation with Turaev–Viro codes. Ann. Phys. 325, 2707–2749 (2010).
Wootton, J. R., Burri, J., Iblisdir, S. & Loss, D. Error correction for non-Abelian topological quantum computation. Phys. Rev. X 4, 011051 (2014).
Dauphinais, G., Ortiz, L., Varona, S. & Martin-Delgado, M. A. Quantum error correction with the semion code. New J. Phys. 21, 053035 (2019).
Zhu, G., Hafezi, M. & Barkeshli, M. Quantum origami: transversal gates for quantum computation and measurement of topological order. Phys. Rev. Res. 2, 013285 (2020).
Schotte, A., Zhu, G., Burgelman, L. & Verstraete, F. Quantum error correction thresholds for the universal Fibonacci Turaev-Viro code. Phys. Rev. X 12, 021012 (2022).
Bravyi, S. & Haah, J. Quantum self-correction in the 3D cubic code model. Phys. Rev. Lett. 111, 200501 (2013).
Gottesman, D. Fault-tolerant quantum computation with constant overhead. Quantum Inf. Comput. 14, 1339–1371 (2014).
Breuckmann, N. P. & Eberhardt, J. N. Quantum low-density parity-check codes. PRX Quantum 2, 040101 (2021).
Quantum codes. https://errorcorrectionzoo.org/list/quantum (2025).
Pachos, J. K. Introduction to Topological Quantum Computation (Cambridge Univ. Press, 2012).
Chamon, C. Quantum glassiness in strongly correlated clean systems: an example of topological overprotection. Phys. Rev. Lett. 94, 040402 (2005).
Haah, J. Local stabilizer codes in three dimensions without string logical operators. Phys. Rev. A 83, 042330 (2011).
Vijay, S., Haah, J. & Fu, L. Fracton topological order, generalized lattice gauge theory, and duality. Phys. Rev. B https://doi.org/10.1103/PhysRevB.94.235157 (2016).
Boesl, J., Liu, Y.-J., Xu, W.-T., Pollmann, F. & Knap, M. Quantum phase transitions between symmetry-enriched fracton phases. Phys. Rev. B https://doi.org/10.1103/fsr8-xd4n (2025).
Hastings, M. B. Topological order at nonzero temperature. Phys. Rev. Lett. 107, 210501 (2011).
Castelnovo, C. & Chamon, C. Topological order in a three-dimensional toric code at finite temperature. Phys. Rev. B 78, 155120 (2008).
Yoshida, B. Feasibility of self-correcting quantum memory and thermal stability of topological order. Ann. Phys. 326, 2566–2633 (2011).
Knill, E., Laflamme, R. & Viola, L. Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525–2528 (2000).
Brown, B. J., Loss, D., Pachos, J. K., Self, C. N. & Wootton, J. R. Quantum memories at finite temperature. Rev. Mod. Phys. 88, 045005 (2016).
Placke, B., Rakovszky, T., Breuckmann, N. P. & Khemani, V. Topological quantum spin glass order and its realization in qLDPC codes. Preprint at https://arxiv.org/abs/2412.13248 (2024).
Li, Y., von Keyserlingk, C. W., Zhu, G. & Jochym-O’Connor, T. Phase diagram of the three-dimensional subsystem toric code. Phys. Rev. Res. https://doi.org/10.1103/PhysRevResearch.6.043007 (2024).
Gunn, D., Styliaris, G., Kraft, T. & Kraus, B. Phases of matrix product states with symmetric quantum circuits and symmetric measurements with feedforward. Phys. Rev. B 111, 115110 (2025).
Cochran, T. A. et al. Visualizing dynamics of charges and strings in (2 + 1)D lattice gauge theories. Nature 642, 315–320 (2025).
Po, H. C., Fidkowski, L., Vishwanath, A. & Potter, A. C. Radical chiral Floquet phases in a periodically driven Kitaev model and beyond. Phys. Rev. B 96, 245116 (2017).
Acknowledgements
A.G.-S. was supported by the UK Research and Innovation (UKRI) under the UK Government’s Horizon Europe funding guarantee (grant no. EP/Y036069/1). M.K. and F.P. acknowledge support from the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy-EXC-2111-390814868, TRR 360 — 492547816, FOR 5522 (project-id 499180199), and DFG grants no. KN1254/1-2 and no. KN1254/2-1, the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 851161), the European Union (grant agreement no. 101169765) and the Munich Quantum Valley, which is supported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Physics thanks Heng Fan and Feng Mei for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gammon-Smith, A., Knap, M. & Pollmann, F. Simulating topological order on quantum processors. Nat Rev Phys (2026). https://doi.org/10.1038/s42254-025-00911-8
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s42254-025-00911-8


