Neuromorphic chips that use spikes to encode information could provide fast and energy-efficient computing for ubiquitous embedded systems. A bio-plausible spike-timing solution for training spiking neural networks that makes the most of sparsity is implemented on the BrainScaleS-2 hardware platform.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Neuromorphic computing paradigms enhance robustness through spiking neural networks
Nature Communications Open Access 19 November 2025
-
Neuromorphic computing for robotic vision: algorithms to hardware advances
Communications Engineering Open Access 13 August 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Indiveri, G. & Liu, S.-C. Proc. IEEE 103, 1379–1397 (2015).
Davies, M. et al. Proc. IEEE 109, 911–934 (2021).
Frenkel, C., Bol, D. & Indiveri, G. Preprint at https://arxiv.org/abs/2106.01288 (2021).
Murmann, B. & Höfflinger, B. (eds). NANO-CHIPS 2030: On-chip AI for an Efficient Data-driven World (Springer, 2020).
Chicca, E., Stefanini, F., Bartolozzi, C. & Indiveri, G. Proc. IEEE 102, 1367–1388 (2014).
Göltz, J. et al. Nat. Mach. Intell. https://doi.org/10.1038/s42256-021-00388-x (2021).
Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M. & Liu, S.-C. Front. Neurosci. 11, 682 (2017).
Davidsol, S. & Furber, S. B. Front. Neurosci. 15, 651141 (2021).
Mostafa, H. IEEE Trans. Neural Netw. Learn. Syst. 29, 3227–3235 (2017).
Kheradpisheh, S. R. & Masquelier, T. Int. J. Neural Syst. 30, 2050027 (2020).
Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C. & Brunel, N. J. Neurosci. 23, 11628–11640 (2003).
Schemmel, J., Billaudelle, S., Dauer, P. & Weis, J. Preprint at https://arxiv.org/abs/2003.11996 (2020).
Thorpe, S., Delorme, A. & Van Rullen, R. Neural Netw. 14, 715–725 (2001).
Frenkel, C., Legat, J.-D. & Bol, D. IEEE International Symposium on Circuits and Systems (ISCAS, 2020).
Indiveri, G. & Sandamirskaya, Y. IEEE Signal Process. Mag. 36, 16–28 (2019).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Frenkel, C. Sparsity provides a competitive advantage. Nat Mach Intell 3, 742–743 (2021). https://doi.org/10.1038/s42256-021-00387-y
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s42256-021-00387-y
This article is cited by
-
Neuromorphic computing paradigms enhance robustness through spiking neural networks
Nature Communications (2025)
-
Neuromorphic computing for robotic vision: algorithms to hardware advances
Communications Engineering (2025)