Extended Data Fig. 1: Scrambler Neural Networks.
From: Interpreting neural networks for biological sequences by learning stochastic masks

(a) Scrambler network architecture. The network is based on groups of residual blocks. This particular network configuration has 5 groups of residual blocks, with 32 channels, filter width 3 and varying dilation factor (1x, 2x, 4x, 2x, 1x). There is a skip connection (single convolutional layer with 32 channels and filter width 1) before each residual group. All skip connections are added together with the output of the final residual group. A softplus activation is applied to the final tensor in order to get importance scores that are strictly larger than 0. (b) Each residual group consists of 4 identical residual blocks connected in series. (c) Each residual block consists of 2 dilated convolutions, each preceded by batch normalization and ReLU activations. A skip connection adds the input tensor to the output of the final convolution.